دانلود مقاله و خرید ترجمه:سیستم تشخیص نفوذ توزیع شده برای محیط های ابری بر اساس تکنیک های داده کاوی - 2018

محرم

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
مقالات ترجمه شده داده کاوی ( data mining )
  • Distributed Intrusion Detection System for Cloud Environments based on Data Mining techniques سیستم تشخیص نفوذ توزیع شده برای محیط های ابری بر اساس تکنیک های داده کاوی
    دانلود مقاله isi | دانلود مقاله انگلیسی رایگان | خرید ترجمه فارسی مقاله

    سال انتشار:

    2018


    ترجمه فارسی عنوان مقاله:

    سیستم تشخیص نفوذ توزیع شده برای محیط های ابری بر اساس تکنیک های داده کاوی


    عنوان انگلیسی مقاله:

    Distributed Intrusion Detection System for Cloud Environments based on Data Mining techniques


    منبع:

    sciencedirect - elsevier - Procedia Computer Science 127 (2018) 35–41


    نویسنده:

    Mohamed Idhammad, Karim Afdel, Mustapha Belouch


    چکیده انگلیسی:

    Nearly two decades after its emergence, the Cloud Computing remains gaining traction among organizations and individual users. Many security issues arise with the transition to this computing paradigm including intrusions detection. Intrusion and attack tools have become more sophisticated defeating traditional Intrusion Detection Systems (IDS) by large amount of network traffic data and dynamic behaviors. The existing Cloud IDSs suffer form low detection accuracy, high false positive rate and high running time. In this paper we present a distributed Machine Learning based intrusion detection system for Cloud environments. The proposed system is designed to be inserted in the Cloud side by side with the edge network components of the Cloud provider. This allows to intercept incoming network traffic to the edge network routers of the physical layer. A time-based sliding window algorithm is used to preprocess the captured network traffic on each Cloud router and pass it to an anomaly detection module using Naive Bayes classifier. A set of commodity server nodes based on Hadoop and MapReduce are available for each anomaly detection module to use when the network congestion increases. For each time window, the anomaly network traffic data on each router side are synchronized to a central storage server. Next, an ensemble learning classifiers based on the Random Forest is used to perform a final multi-class classification step in order to detect the type of each attack.
    Various experiment are performed in the Google Cloud Platform in order to assess the proposed system using the CIDDS-001 public dataset. The obtained results are satisfactory when compared to a standard Random Forest classifier. The system achieved an average accuracy of 97%, an average false positive rate of 0.21% and an average running time of 6.23s.
    Keywords: Intrusion Detection Systems | Cloud Computing | Machine Leaning | Hadoop | MapReduce


    چکیده فارسی:

    تقریبا دو دهه بعد از ظهور انها؛ محاسبات ابری همچنان در میان سازمان ها و کاربران فردی در حال افزایش است. بسیاری از مسائل امنیتی همراه انتقال برای این الگوی محاسباتی شامل تشخیص نفوذ به وجود می اید. ابزارهای حمله و نفوذ با شکستن سیستم های تشخیص نفوذ سنتی (IDS) با مقدار زیادی از اطلاعات ترافیک شبکه و رفتارهای پویا پیچیده تر شده است. IDSs ابری موجود از کمبود دقت تشخیص؛ نرخ مثبت کاذب بالا و زمان اجرای بالا رنج می برد. در این مقاله ما یک یادگیری توزیع ماشینی بر مبنی سیستم تشخیص نفوذ برای محیط های ابری را ارائه می دهیم. سیستم پیشنهاد شده برای مندرجات در سمت ابری به وسیله اندازه همراه اجزای شبکه لبه از ابرهای ارائه شده است. اینها به ترافیک رهگیری شبکه های ورودی به لبه شبکه routers از از لایه فیزیکی اجازه می دهد. یک الگوریتم پنجره کشویی (sliding window) مبتنی بر زمان برای پیش پردازش شبکه گرفتار ترافیک در هر router ابری استفاده می شود و سپس در نمونه تشخیص ناهنجاری دسته بندی Naive Bayes استفاده می شود. یک مجموعه از گره های سرور کالا بر مبنی یک Hadoop و MapReduce برای هر نمونه تشخیص ناهنجاری از زمانی که تراکم شبکه افزایش می یابد؛ در دسترس است. برای هر پنجره زمانی؛ داده ترافیک ناهنجاری شبکه در هر طرف router برای یک سرور ذخیره سازی مرکزی هماهنگ شده است. بعد؛ یک طبقه بندی یادگیری گروهی بر مبنی یک Forest تصادفی برای اجرای یک مرحله دسته بندی چند کلاسه نهایی به منظور تشخیص انواعی از هر حمله استفاده می شود.
    لغات کلیدی: سیستم های تشخیص نفوذ | محاسبات ابری | یادگیری ماشین | هادوپ | MapReduce


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    تعداد صفحات فایل doc فارسی(با احتساب مراجع): 16

    وضعیت ترجمه عناوین تصاویر و جداول: به صورت کامل ترجمه شده است

    وضعیت ترجمه متون داخل تصاویر و جداول: به صورت کامل ترجمه شده است

    حجم فایل: 181 کیلوبایت


    قیمت: 28000 تومان  25200 تومان(10% تخفیف)


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-کاوی
موضوعات
footer