دانلود مقاله انگلیسی رایگان:HEPart: یک الگوریتم پارتیشن بندی فوق العاده گرافیکی متعادل برای برنامه های داده بزرگ

تخفیف ماه رمضان

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • HEPart: A balanced hypergraph partitioning algorithm for big data applications HEPart: A balanced hypergraph partitioning algorithm for big data applications
    HEPart: A balanced hypergraph partitioning algorithm for big data applications

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    HEPart: A balanced hypergraph partitioning algorithm for big data applications


    ترجمه فارسی عنوان مقاله:

    HEPart: یک الگوریتم پارتیشن بندی فوق العاده گرافیکی متعادل برای برنامه های داده بزرگ


    منبع:

    Sciencedirect - Elsevier - Future Generation Computer Systems, 83 (2018) 250-268: doi:10:1016/j:future:2018:01:009


    نویسنده:

    Wenyin Yang a,c, Guojun Wang b,*, Kim-Kwang Raymond Choo d,e, Shuhong Chen b


    چکیده انگلیسی:

    Minimizing the query cost among multi-hosts is important to data processing for big data applications. Hypergraph is good at modeling data and data relationships of complex networks, the typical big data applications, by representing multi-way relationships or interactions as hyperedges. Hypergraph parti tioning (HP) helps to partition the query loads on several hosts, enabling the horizontal scaling of large scale networks. Existing heuristic HP algorithms are generally vertex hypergraph partitioning, designed to minimize the number of cut hyperedges while satisfying the balance requirements of part weights regarding vertices. However, since workloads are mainly produced by group operations, minimizing query costs landing on hyperedges and balancing the workloads should be the objectives in horizontal scaling. We thus propose a heuristic hyperedge partitioning algorithm, HEPart. Specifically, HEPart directly partitions the hypergraph into K sub-hypergraphs with a minimum cutsize for vertices, while satisfying the balance constraint on hyperedge weights, based on the effective move of hyperedges. The performance of HEPart is evaluated using several complex network datasets modeled by undirected hypergraphs, under different cutsize metrics. The partitioning quality of HEPart is then compared with alternative hyperedge partitioners and vertex hypergraph partitioning algorithms. The experimental findings demonstrate the utility of HEPart (e.g. low cut cost while keeping load balancing as required, especially over scale-free networks).
    Keywords: Hypergraph partitioning ، Hyperedge partitioning ، Load balancing ، Big data


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 19
    حجم فایل: 2686 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer