دانلود مقاله انگلیسی رایگان:مجموعه ناهموار محلی: راه حل برای تجزیه و تحلیل داده های ناهموار در داده های بزرگ

رمضان

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Local rough set: A solution to rough data analysis in big data Local rough set: A solution to rough data analysis in big data
    Local rough set: A solution to rough data analysis in big data

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    Local rough set: A solution to rough data analysis in big data


    ترجمه فارسی عنوان مقاله:

    مجموعه ناهموار محلی: راه حل برای تجزیه و تحلیل داده های ناهموار در داده های بزرگ


    منبع:

    Sciencedirect - Elsevier - International Journal of Approximate Reasoning, 97 (2018) 38–63: 10:1016/j:ijar:2018:01:008


    نویسنده:

    Yuhua Qian a,b,c,∗,1, Xinyan Liang a,b,c,1, Qi Wang a,b,c,1, Jiye Liang b, Bing Liu d, Andrzej Skowron e,f, Yiyu Yao g, Jianmin Ma h, Chuangyin Dang i


    چکیده انگلیسی:

    As a supervised learning method, classical rough set theory often requires a large amount of labeled data, in which concept approximation and attribute reduction are two key issues. With the advent of the age of big data however, labeling data is an expensive and laborious task and sometimes even infeasible, while unlabeled data are cheap and easy to collect. Hence, techniques for rough data analysis in big data using a semi-supervised approach, with limited labeled data, are desirable. Although many concept approximation and attribute reduction algorithms have been proposed in the classical rough set theory, quite often, these methods are unable to work well in the context of limited labeled big data. The challenges to classical rough set theory can be summarized with three issues: limited labeled property of big data, computational inefficiency and over-fitting in attribute reduction. To address these three challenges, we introduce a theoretic framework called local rough set, and develop a series of corresponding concept approximation and attribute reduction algorithms with linear time complexity, which can efficiently and effectively work in limited labeled big data. Theoretical analysis and experimental results show that each of the algorithms in the local rough set significantly outperforms its original counterpart in classical rough set theory. It is worth noting that the performances of the algorithms in the local rough set become more significant when dealing with larger data sets.
    Keywords: Rough set theory ، Local rough set ، Concept approximation ، Attribute reduction ، Limited labeled data


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 26
    حجم فایل: 3956 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer