دانلود مقاله انگلیسی رایگان:از داده های بزرگ به دانش: یک رویکرد زمان فضایی به تشخیص نرم افزارهای مخرب - 2018

تخفیف ماه رمضان

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • From big data to knowledge: A spatio temporal approach to malware detection From big data to knowledge: A spatio temporal approach to malware detection
    From big data to knowledge: A spatio temporal approach to malware detection

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    From big data to knowledge: A spatio temporal approach to malware detection


    ترجمه فارسی عنوان مقاله:

    از داده های بزرگ به دانش: یک رویکرد زمان فضایی به تشخیص نرم افزارهای مخرب


    منبع:

    Sciencedirect - Elsevier - Computers & Security, 74 (2018) 167-183: doi:10:1016/j:cose:2017:12:005


    نویسنده:

    Weixuan Mao a,b, Zhongmin Cai a,*, Yuan Yang a, Xiaohong Shi c, Xiaohong Guan a,d


    چکیده انگلیسی:

    The deployment of endpoint protection has been gradually migrated from individual clients to remote cloud servers, which is termed as cloud based security service. The new para digm of security defense produces a large amount of data and log files, and motivates data driven techniques for detecting malicious software. This paper conducts an empirical study on the log of a real cloud based security service to characterize the occurrence of execut able files in end hosts, which concerns 124,782 benign and 113,305 malicious executable files occurred in 165,549,417 end hosts. The end hosts and the timestamps that an execut able file occurs in provide insights into the distribution of software in wild from spatial and temporal perspectives, respectively. Meanwhile, we investigate the strategies behind the char acterizations, and observe the preferential attachment process and the periodicity of file occurrence in end hosts. The observed different occurrence patterns of benign and mali cious files in end hosts inspire us a new scalable approach to malware detection. We learn from the characterizations that, the associated files shared more spatial and temporal in formation in common are more likely to be same in their labels, either benign or malicious. Thus, we devise a graph based semi-supervised learning algorithm for real-time malware detection by taking into account the spatio-temporal information of the distribution of ex ecutable files. Experimental results demonstrate that our approach increases the performance on malware detection by 14.7% over previous techniques on average.
    Keywords: Malware detection ، Data-driven security analysis ، File co-occurrence ، Graph based semi-supervised ، learning ، Content-agnostic


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 1684 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer