دانلود مقاله انگلیسی رایگان:تجزیه و تحلیل عملکرد چند لایه برای تشخیص و ردیابی موضوع مبتنی بر ابر در برنامه های داده های بزرگ - 2018

دانلود بهترین مقالات isi همراه با ترجمه فارسی

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • A multi-layered performance analysis for cloud-based topic detection and tracking in Big Data applications A multi-layered performance analysis for cloud-based topic detection and tracking in Big Data applications
    A multi-layered performance analysis for cloud-based topic detection and tracking in Big Data applications

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    A multi-layered performance analysis for cloud-based topic detection and tracking in Big Data applications


    ترجمه فارسی عنوان مقاله:

    تجزیه و تحلیل عملکرد چند لایه برای تشخیص و ردیابی موضوع مبتنی بر ابر در برنامه های داده های بزرگ


    منبع:

    Sciencedirect - Elsevier - Future Generation Computer Systems, Corrected proof: doi:10:1016/j:future:2018:01:047


    نویسنده:

    Meisong Wang a, Prem Prakash Jayaraman b, Ellis Solaiman c,*, Lydia Y. Chen d, Zheng Li e, Song Jun f, Dimitrios Georgakopoulos b, Rajiv Ranjan f,c


    چکیده انگلیسی:

    In the era of the Internet of Things and social media; communities, governments, and corporations are increasingly eager to exploit new technological innovations in order to track and keep up to date with important new events. Examples of such events include the news, health related incidents, and other major occurrences such as earthquakes and landslides. This area of research commonly referred to as Topic Detection and Tracking (TDT) is proving to be an important component of the current generation of Internet-based applications, where it is of critical importance to have early detection and timely response to important incidents such as those mentioned above. The advent of Big data though beneficial to TDT applications also brings about the enormous challenge of dealing with data variety, velocity and volume (3Vs). A promising solution is to employ Cloud Computing, which enables users to access powerful and scalable computational and storage resources in a ‘‘pay-as-you-go’’ fashion. However, the efficient use of Cloud resources to boost the performance of mission critical applications employing TDT is still an open topic that has not been fully and effectively investigated. An important prerequisite is to build a performance analysis capable of capturing and explaining specific factors (for example; CPU, Memory, I/O, Network, Cloud Platform Service, and Workload) that influence the performances of TDT applications in the cloud. Within this paper, our main contribution, is that we present a multi-layered performance analysis for big data TDT applications deployed in a cloud environment. Our analysis captures factors that have an important effect on the performance of TDT applications. The novelty of our work is that it is a first kind of vertical analysis on infrastructure, platform and software layers. We identify key parameters and metrics in each cloud layer (including Infrastructure, Software, and Platform layers), and establish the dependencies between these metrics across the layers. We demonstrate the effectiveness of the proposed analysis via experimental evaluations using real-world datasets obtained from Twitter.
    Keywords: Cloud-based TDT ، Big Data ، Performance analysis ، Cloud computing


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 1303 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer