دانلود مقاله انگلیسی رایگان:یک مدل ترکیبی از اینترنت اشیا و محاسبات ابری برای مدیریت داده های بزرگ در برنامه های خدمات بهداشتی - 2018

دانلود بهترین مقالات isi همراه با ترجمه فارسی

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • A hybrid model of Internet of Things and cloud computing to manage big data in health services applications A hybrid model of Internet of Things and cloud computing to manage big data in health services applications
    A hybrid model of Internet of Things and cloud computing to manage big data in health services applications

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    A hybrid model of Internet of Things and cloud computing to manage big data in health services applications


    ترجمه فارسی عنوان مقاله:

    یک مدل ترکیبی از اینترنت اشیا و محاسبات ابری برای مدیریت داده های بزرگ در برنامه های خدمات بهداشتی


    منبع:

    Sciencedirect - Elsevier - Future Generation Computer Systems, Corrected proof: doi:10:1016/j:future:2018:03:005


    نویسنده:

    Mohamed Elhoseny a,*, Ahmed Abdelaziz b, Ahmed S. Salama c,d, A.M. Riad a, Khan Muhammad e, Arun Kumar Sangaiah f


    چکیده انگلیسی:

    Over the last decade, there has been an increasing interest in big data research, especially for health services applications. The adoption of the cloud computing and the Internet of Things (IoT) paradigm in the healthcare field can bring several opportunities to medical IT, and experts believe that it can significantly improve healthcare services and contribute to its continuous and systematic innovation in a big data environment such as Industry 4.0 applications. However, the required resources to manage such data in a cloud-IoT environment are still a big challenge. Accordingly, this paper proposes a new model to optimize virtual machines selection (VMs) in cloud-IoT health services applications to efficiently manage a big amount of data in integrated industry 4.0. Industry 4.0 applications require to process and analyze big data, which come from different sources such as sensor data, without human intervention. The proposed model aims to enhance the performance of the healthcare systems by reducing the stakeholders’ request execution time, optimizing the required storage of patients’ big data and providing a real-time data retrieval mechanism for those applications. The architecture of the proposed hybrid cloud-IoT consists of four main components: stakeholders’ devices, stakeholders’ requests (tasks), cloud broker and network administrator. To optimize the VMs selection, three different well-known optimizers (Genetic Algorithm (GA), Particle swarm optimizer (PSO) and Parallel Particle swarm optimization (PPSO) are used to build the proposed model. To calculate the execution time of stakeholders’ requests, the proposed fitness function is a composition of three important criteria which are CPU utilization, turn-around time and waiting time. A set of experiments were conducted to provide a comparative study between those three optimizers regarding the execution time, the data processing speed, and the system efficiency. The proposed model is tested against the state-of-the-art method to evaluate its effectiveness. The results show that the proposed model outperforms on the state-of-the-art models in total execution time the rate of 50%. Also, the system efficiency regarding real-time data retrieve is significantly improved by 5.2%.
    Keywords: Big data ، Industry 4.0 ، Cloud computing ، Internet of Things ، Health services ، Genetic Algorithm ، Particle swarm optimization


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 1406 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer