دانلود مقاله انگلیسی رایگان:خوشه بندی داده های اینترنت اشیا بزرگ توسط بهینه سازی ماتریس های متمرکز و DGC مبتنی بر پارتیشن موازی در Hadoop - 2018

تخفیف ماه رمضان

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Clustering big IoT data by metaheuristic optimized mini-batch and parallel partition-based DGC in Hadoop Clustering big IoT data by metaheuristic optimized mini-batch and parallel partition-based DGC in Hadoop
    Clustering big IoT data by metaheuristic optimized mini-batch and parallel partition-based DGC in Hadoop

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    Clustering big IoT data by metaheuristic optimized mini-batch and parallel partition-based DGC in Hadoop


    ترجمه فارسی عنوان مقاله:

    خوشه بندی داده های اینترنت اشیا بزرگ توسط بهینه سازی ماتریس های متمرکز و DGC مبتنی بر پارتیشن موازی در Hadoop


    منبع:

    Sciencedirect - Elsevier - Future Generation Computer Systems, Corrected proof: doi:10:1016/j:future:2018:03:006


    نویسنده:

    Rui Tang, Simon Fong *


    چکیده انگلیسی:

    Clustering algorithms are an important branch of data mining family which has been applied widely in IoT applications such as finding similar sensing patterns, detecting outliers, and segmenting large behavioral groups in real-time. Traditional full batch k-means for clustering IoT big data is confronted by large scaled storage and high computational complexity problems. In order to overcome the latency inherited from full batch k-means, two big data processing methods were often used: the first method is to use small batches as the input data to multiple computers for reducing the computation efforts. However, depending on the sensed data which may be heterogeneously fused from different sources in an IoT network, the size of each mini batch may vary in each iteration of clustering process. When these input data are subject to clustering their centers would shift drastically, which affects the final clustering results. The second method is parallel computing, it decreases the runtime while the overall computational effort remains the same. Furthermore, some centroid based clustering algorithm such as k-means converges easily into local optima. In light of this, in this paper, a new partitioned clustering method that is optimized by metaheuristic is proposed for IoT big data environment. The method has three main activities: Firstly, a sample of the dataset is partitioned into mini batches. It is followed by adjusting the centroids of the mini batches of data. The third step is collating the mini batches to form clusters, so the quality of the clusters would be maximized. How the positions of the centroids could be optimally attuned at the mini batches are governed by a metaheuristic called Dynamic Group Optimization. The data are processed in parallel in Hadoop. Extensive experiments are conducted to investigate the performance. The results show that our proposed method is a promising tool for clustering fused IoT data efficiently.
    Keywords: Metaheuristic ، Partitioning ، Clustering ، Hadoop ، IoT data، Data fusion


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 18
    حجم فایل: 1686 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer