دانلود مقاله انگلیسی رایگان:یادگیری شبه نظارت شده برای تجزیه و تحلیل داده های اجتماعی بزرگ - 2018

بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Semi-supervised learning for big social data analysis Semi-supervised learning for big social data analysis
    Semi-supervised learning for big social data analysis

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    Semi-supervised learning for big social data analysis


    ترجمه فارسی عنوان مقاله:

    یادگیری شبه نظارت شده برای تجزیه و تحلیل داده های اجتماعی بزرگ


    منبع:

    Sciencedirect - Elsevier - Neurocomputing, 275 (2018) 1662-1673: doi:10:1016/j:neucom:2017:10:010


    نویسنده:

    Amir Hussain a, Erik Cambria b,∗


    چکیده انگلیسی:

    In an era of social media and connectivity, web users are becoming increasingly enthusiastic about inter acting, sharing, and working together through online collaborative media. More recently, this collective intelligence has spread to many different areas, with a growing impact on everyday life, such as in ed ucation, health, commerce and tourism, leading to an exponential growth in the size of the social Web. However, the distillation of knowledge from such unstructured Big data is, an extremely challenging task. Consequently, the semantic and multimodal contents of the Web in this present day are, whilst being well suited for human use, still barely accessible to machines. In this work, we explore the potential of a novel semi-supervised learning model based on the combined use of random projection scaling as part of a vector space model, and support vector machines to perform reasoning on a knowledge base. The latter is developed by merging a graph representation of commonsense with a linguistic resource for the lexical representation of affect. Comparative simulation results show a significant improvement in tasks such as emotion recognition and polarity detection, and pave the way for development of future semi-supervised learning approaches to big social data analytics.
    Keywords: Semi-supervised learning ، Big social data analysis ، Sentiment analysis


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 1227 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer