دانلود مقاله انگلیسی رایگان:موتور همبستگی و نقشه برداری با سرعت بالا برای ایجاد سریع شبکه های ارتباطی مغز از داده های بزرگ fMRI

رمضان

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • High-Performance Correlation and Mapping Engine for rapid generating brain connectivity networks from big fMRI data High-Performance Correlation and Mapping Engine for rapid generating brain connectivity networks from big fMRI data
    High-Performance Correlation and Mapping Engine for rapid generating brain connectivity networks from big fMRI data

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    High-Performance Correlation and Mapping Engine for rapid generating brain connectivity networks from big fMRI data


    ترجمه فارسی عنوان مقاله:

    موتور همبستگی و نقشه برداری با سرعت بالا برای ایجاد سریع شبکه های ارتباطی مغز از داده های بزرگ fMRI


    منبع:

    Sciencedirect - Elsevier - Journal of Computational Science, 26 (2018) 157-164: doi:10:1016/j:jocs:2018:04:013


    نویسنده:

    J. Lusher a,∗, J. Ji a, J. Orr b


    چکیده انگلیسی:

    Brain connectivity networks help physicians better understand the neurological effects of certain diseases and make improved treatment options for patients. Seed-based Correlation Analysis (SCA) of Functional Magnetic Resonance Imaging (fMRI) data has been used to create the individual brain connectivity net works. However, an outstanding issue is the long processing time to generate full brain connectivity maps. With close to a million individual voxels in a typical fMRI dataset, the number of calculations involved in a voxel-by-voxel SCA becomes very high. With the emergence of the dynamic time-varying functional connectivity analysis, the population-based studies, and the studies relying on real-time neurological feedbacks, the need for rapid processing methods becomes even more critical. This work aims to develop a new method which produces high-resolution brain connectivity maps rapidly. The new method accel erates the correlation processing by using an architecture that includes clustered FPGAs and an efficient memory pipeline, which is termed High-Performance Correlation and Mapping Engine (HPCME). The method has been tested with datasets from the Human Connectome Project. The preliminary results show that HPCME with four FPGAs can improve the SCA processing speed by a factor of 27 or more over that of a PC workstation with a multicore CPU.
    Keywords: Brain Functional Connectivity ، FMRI ، Seed-based Correlation Analysis ، FPGA-based Parallel Computing ، Human Connectome Project


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 1453 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer