دانلود مقاله انگلیسی رایگان:رویکرد استخراج ویژگی تطبیقی برای تشخیص آریتمی های قلب با استفاده از تکنیک ترکیبی MRDWT و MPNN طبقه بندی از داده بزرگ ECG - 2018

دانلود بهترین مقالات isi همراه با ترجمه فارسی

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • A Novel Adaptive Feature Extraction for Detection of Cardiac Arrhythmias Using Hybrid Technique MRDWT & MPNN Classifier from ECG Big Data A Novel Adaptive Feature Extraction for Detection of Cardiac Arrhythmias Using Hybrid Technique MRDWT & MPNN Classifier from ECG Big Data
    A Novel Adaptive Feature Extraction for Detection of Cardiac Arrhythmias Using Hybrid Technique MRDWT & MPNN Classifier from ECG Big Data

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    A Novel Adaptive Feature Extraction for Detection of Cardiac Arrhythmias Using Hybrid Technique MRDWT & MPNN Classifier from ECG Big Data


    ترجمه فارسی عنوان مقاله:

    رویکرد استخراج ویژگی تطبیقی برای تشخیص آریتمی های قلب با استفاده از تکنیک ترکیبی MRDWT و MPNN طبقه بندی از داده بزرگ ECG


    منبع:

    Sciencedirect - Elsevier - Big Data Research, Corrected proof: 10:1016/j:bdr:2018:02:003


    نویسنده:

    Hari Mohan Rai ∗, Kalyan Chatterjee


    چکیده انگلیسی:

    The efficient automatic detection of cardiac arrhythmia using a hybrid technique from ECG big data has been proposed with novel feature extraction technique using Multiresolution Discrete Wavelet Transform (MRDWT) and Multilayer Probabilistic Neural Network (MPNN) classifier. Big Data of ECG signals have been selected from MIT–BIH arrhythmia database for detection of two types of arrhythmias LBBB (Left Bundle Branch Block) and RBBB (Right Bundle Branch Block). The proposed technique can accurately detect and classify LBBB and RBBB along with normal heartbeat. A novel and hybrid method of detection of cardiac arrhythmia have four main stages: denoising of raw ECG, baseline wander removal, proposed feature extraction, and detection of abnormal heartbeats using MPNN neural classifier. 8600 ECG beats were selected, including 4200 normal and 4400 abnormal beats (2200 LBBB and 2200 RBBB) were utilized for testing the proposed technique. The detection outcome using MPNN was compared with other two neural classifiers: Feed Forward Neural Network (FFNN) and Back Propagation Neural Network (BPNN) classifiers. The accuracy and efficiency of classifiers performance were attained in terms of CER (Classification Error Rate), SP (Specificity), Se (Sensitivity), Pr (Precision), PPr (Positive Predictivity) and F Score. The system performance is achieved with 96.22%, 97.15% and 99.07% overall accuracy using FFNN, BPNN and MPNN. The average percentage of classification error rate (CER) using MPNN classifier is lowest 0.62% whereas FFNN and BPNN show 2.2% and 1. 90% average CER.
    Keywords: Big data ، Cardiac arrhythmias ،Biomedical signal processing ، Artificial intelligence ، Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 6866 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer