دانلود مقاله انگلیسی رایگان:DRI-RCNN: یک دیدگاهی برای شناسایی مرور فریب آمیز با استفاده از شبکه عصبی بازگشت کننده حلقه ای - 2018

دانلود بهترین مقالات isi همراه با ترجمه فارسی

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی شبکه های عصبی رایگان
  • DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network


    ترجمه فارسی عنوان مقاله:

    DRI-RCNN: یک دیدگاهی برای شناسایی مرور فریب آمیز با استفاده از شبکه عصبی بازگشت کننده حلقه ای


    منبع:

    sciencedirect-elsevier-Information Processing & Management Volume 54, Issue 4, July 2018, Pages 576-592


    نویسنده:

    Wen Zhang, Yuhang Du, Taketoshi Yoshida, Qing Wang


    چکیده انگلیسی:

    With the widespread of deceptive opinions in the Internet, how to identify online deceptive reviews automatically has become an attractive topic in research field. Traditional methods concentrate on extracting different features from online reviews and training machine learning classifiers to produce models to decide whether an incoming review is deceptive or not. This paper proposes an approach called DRI-RCNN (Deceptive Review Identification by Recurrent Convolutional Neural Network) to identify deceptive reviews by using word contexts and deep learning. The basic idea is that since deceptive reviews and truthful reviews are written by writers without and with real experience respectively, the writers of the reviews should have different contextual knowledge on their target objectives under description. In order to differentiate the deceptive and truthful contextual knowledge embodied in the online reviews, we represent each word in a review with six components as a recurrent convolutional vector. The first and second components are two numerical word vectors derived from training deceptive and truthful reviews, respectively. The third and fourth components are left neighboring deceptive and truthful context vectors derived by training a recurrent convolutional neural network on context vectors and word vectors of left words. The fifth and six components are right neighboring deceptive and truthful context vectors of right words. Further, we employ max-pooling and ReLU (Rectified Linear Unit) filter to transfer recurrent convolutional vectors of words in a review to a review vector by extracting positive maximum feature elements in recurrent convolutional vectors of words in the review. Experiment results on the spam dataset and the deception dataset demonstrate that the proposed DRI-RCNN approach outperforms the state-of-the-art techniques in deceptive review identification.
    keywords: Deceptive review identification| Recurrent convolutional vector| Contextual knowledge| Word embedding| DRI-RCNN


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 17
    حجم فایل: 1064 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی: نظر




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
شبکه-های-عصبی
موضوعات
footer