دانلود مقاله انگلیسی رایگان:استفاده از مشابهت معنایی برای کاهش برچسب های غلط در نظارت دور برای استخراج رابطه - 2018

بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی شبکه های عصبی رایگان
  • Using semantic similarity to reduce wrong labels in distant supervision for relation extraction Using semantic similarity to reduce wrong labels in distant supervision for relation extraction

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    Using semantic similarity to reduce wrong labels in distant supervision for relation extraction


    ترجمه فارسی عنوان مقاله:

    استفاده از مشابهت معنایی برای کاهش برچسب های غلط در نظارت دور برای استخراج رابطه


    منبع:

    sciencedirect-elsevier-Information Processing & Management Volume 54, Issue 4, July 2018, Pages 593-608


    نویسنده:

    Chengsen Ru, Jintao Tang, Shasha Li, Songxian Xie, Ting Wang


    چکیده انگلیسی:

    Distant supervision (DS) has the advantage of automatically generating large amounts of labelled training data and has been widely used for relation extraction. However, there are usually many wrong labels in the automatically labelled data in distant supervision (Riedel, Yao, & McCallum, 2010). This paper presents a novel method to reduce the wrong labels. The proposed method uses the semantic Jaccard with word embedding to measure the semantic similarity between the relation phrase in the knowledge base and the dependency phrases between two entities in a sentence to filter the wrong labels. In the process of reducing wrong labels, the semantic Jaccard algorithm selects a core dependency phrase to represent the candidate relation in a sentence, which can capture features for relation classification and avoid the negative impact from irrelevant term sequences that previous neural network models of relation extraction often suffer. In the process of relation classification, the core dependency phrases are also used as the input of a convolutional neural network (CNN) for relation classification. The experimental results show that compared with the methods using original DS data, the methods using filtered DS data performed much better in relation extraction. It indicates that the semantic similarity based method is effective in reducing wrong labels. The relation extraction performance of the CNN model using the core dependency phrases as input is the best of all, which indicates that using the core dependency phrases as input of CNN is enough to capture the features for relation classification and could avoid negative impact from irrelevant terms.
    keywords: Distant supervision| Relation extraction| Wrong label| Semantic Jaccard| CNN


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 859 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی: نظر




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
شبکه-های-عصبی
موضوعات
footer