دانلود مقاله انگلیسی رایگان:یک روش کاوش قانون انجمنی معادلات داده های بزرگ برای پارامترهای ترانسفورماتور قدرت براساس مدل نمودار احتمالاتی - 2018

محرم

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • A Novel Association Rule Mining Method of Big Data for Power Transformers State Parameters Based on Probabilistic Graph Model A Novel Association Rule Mining Method of Big Data for Power Transformers State Parameters Based on Probabilistic Graph Model
    A Novel Association Rule Mining Method of Big Data for Power Transformers State Parameters Based on Probabilistic Graph Model

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    A Novel Association Rule Mining Method of Big Data for Power Transformers State Parameters Based on Probabilistic Graph Model


    ترجمه فارسی عنوان مقاله:

    یک روش کاوش قانون انجمنی معادلات داده های بزرگ برای پارامترهای ترانسفورماتور قدرت براساس مدل نمودار احتمالاتی


    منبع:

    IEEE - IEEE TRANSACTIONS ON SMART GRID, VOL: 9, NO: 2, MARCH 2018


    نویسنده:

    Gehao Sheng, Huijuan Hou, Xiuchen Jiang, and Yufeng Chen


    چکیده انگلیسی:

    The correlative change analysis of state parameters can provide powerful technical supports for safe, reliable, and high-efficient operation of the power transformers. However, the analysis methods are primarily based on a single or a few state parameters, and hence the potential failures can hardly be found and predicted. In this paper, a data-driven method of association rule mining for transformer state parameters has been proposed by combining the Apriori algorithm and probabilistic graphical model. In this method the disadvantage that whenever the frequent items are searched the whole data items have to be scanned cyclically has been overcame. This method is used in mining association rules of the numerical solutions of differential equations. The result indicates that association rules among the numerical solutions can be accurately mined. Finally, practical measured data of five 500 kV transformers is analyzed by the proposed method. The association rules of various state parameters have been excavated, and then the mined association rules are used in modifying the prediction results of single state parameters. The results indicate that the application of the mined association rules improves the accuracy of prediction. Therefore, the effectiveness and feasibility of the proposed method in association rule mining has been proved
    Index Terms: Power transformers, state parameters, association rules, big data, data-driven method, Apriori algorithm, probabilistic graph, state prediction


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 1754 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer