دانلود مقاله انگلیسی رایگان:مدل محاسباتی کانولوشن عمیق برای یادگیری ویژگی بر روی داده های بزرگ دراینترنت اشیا - 2018

بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Deep Convolutional Computation Model for Feature Learning on Big Data in Internet of Things Deep Convolutional Computation Model for Feature Learning on Big Data in Internet of Things
    Deep Convolutional Computation Model for Feature Learning on Big Data in Internet of Things

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    Deep Convolutional Computation Model for Feature Learning on Big Data in Internet of Things


    ترجمه فارسی عنوان مقاله:

    مدل محاسباتی کانولوشن عمیق برای یادگیری ویژگی بر روی داده های بزرگ دراینترنت اشیا


    منبع:

    IEEE - IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL: 14, NO: 2, FEBRUARY 2018


    نویسنده:

    Peng Li, Zhikui Chen , Laurence Tianruo Yang , Qingchen Zhang, and M. Jamal Deen


    چکیده انگلیسی:

    Currently, a large number of industrial data, usually referred to big data, are collected from Internet of Things (IoT). Big data are typically heterogeneous, i.e., each object in big datasets is multimodal, posing a challenging issue on the convolutional neural network (CNN) that is one of the most representative deep learning models. In this paper, a deep convolutional computation model (DCCM) is proposed to learn hierarchical features of big data by using the tensor representation model to extend the CNN from the vector space to the tensor space. To make full use of the local features and topologies contained in the big data, a tensor convolution operation is defined to prevent overfitting and improve the training efficiency. Furthermore, a high-order backpropagation algorithm is proposed to train the parameters of the deep convolutional computational model in the high-order space. Finally, experiments on three datasets, i.e., CUAVE, SNAE2, and STL-10 are carried out to verify the performance of the DCCM. Experimental results show that the deep convolutional computation model can give higher classification accuracy than the deep computation model or the multimodal model for big data in IoT
    Index Terms: Big data, convolutional neural network (CNN), deep convolutional computation model (DCCM), high-order backpropagation (HBP) algorithm, Internet of Things (IoT), tensor computation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 577 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer