کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.
از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود
سال انتشار:
2018
عنوان انگلیسی مقاله:
Hydrological Analysis Using Satellite Remote Sensing Big Data and CREST Model
ترجمه فارسی عنوان مقاله:
تجزیه و تحلیل هیدرولوژیکی با استفاده از داده های بزرگ حسی از راه دور ماهواره ای و مدل CREST
منبع:
IEEE - Received January 28, 2018, accepted February 21, 2018, date of publication February 28, 2018, date of current version March 13, 2018:
نویسنده:
JUN MA1, WEIWEI SUN 1,2, (Member, IEEE), GANG YANG1, AND DIANFA ZHANG1
چکیده انگلیسی:
Hydrological modeling significantly contributes to the understanding of catchment water
balance and water resource management and mitigates negative impacts of flooding. Considering the
advantages of satellite remote sensing big data and the coupled routing and excess storage (CREST) model,
this paper investigates the hydrological modeling in the Shehong basin during 2006–2013. The results
show that humid Shehong basin has main rainfalls in summer (From May to September). For the monthly
average rainfall and streamflow, there is a remarkable increase (+52%) in discharge and a smaller increase
(+18%) in rainfall in the second period (2010–2013) relative to the first period (2006–2009). The CREST
model was calibrated using China gauge-based daily precipitation analysis for the period of 2006–2009,
followed by a favorable performance with Nash-Sutcliffe coefficient efficiency (NSCE) of 0.77, correlation
coefficient (CC) up to 0.88 and −11% Bias. The model validation shows an error metric with NSCE of 0.74,
CC of 0.87 and −11.7% Bias. In terms of water balance modeling results at Shehong basin, the runoff
and rainfall estimates from CREST model coincide well with the gauge observations, indicating the model
captures the appropriate signature of soil moisture variability. Therefore, the satellite-based precipitation
product is feasible in hydrological prediction, and the CREST models the interaction between surface and
subsurface water flow process in the Shehong basin
INDEX TERMS : Satellite remote sensing big data, hydrological analysis, TRMM, CREST, water balance
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0