دانلود مقاله انگلیسی رایگان:یک بردار حمایتی بیش از حد حقیقی بی هدف ماشین آلات برای داده های بزرگ امنیت سایبری - 2018

روز دانشجو

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • A Bi-objective Hyper-Heuristic Support Vector Machines for Big Data Cyber-Security A Bi-objective Hyper-Heuristic Support Vector Machines for Big Data Cyber-Security
    A Bi-objective Hyper-Heuristic Support Vector Machines for Big Data Cyber-Security

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    A Bi-objective Hyper-Heuristic Support Vector Machines for Big Data Cyber-Security


    ترجمه فارسی عنوان مقاله:

    یک بردار حمایتی بیش از حد حقیقی بی هدف ماشین آلات برای داده های بزرگ امنیت سایبری


    منبع:

    IEEE - Received December 15, 2017, accepted January 16, 2018, date of publication March 6, 2018, date of current version March 15, 2018:


    نویسنده:

    NASSER R. SABAR 1, XUN YI2, AND ANDY SONG2


    چکیده انگلیسی:

    Cyber security in the context of big data is known to be a critical problem and presents a great challenge to the research community. Machine learning algorithms have been suggested as candidates for handling big data security problems. Among these algorithms, support vector machines (SVMs) have achieved remarkable success on various classification problems. However, to establish an effective SVM, the user needs to define the proper SVM configuration in advance, which is a challenging task that requires expert knowledge and a large amount of manual effort for trial and error. In this paper, we formulate the SVM configuration process as a bi-objective optimization problem in which accuracy and model complexity are considered as two conflicting objectives. We propose a novel hyper-heuristic framework for bi-objective optimization that is independent of the problem domain. This is the first time that a hyper-heuristic has been developed for this problem. The proposed hyper-heuristic framework consists of a high-level strategy and low-level heuristics. The high-level strategy uses the search performance to control the selection of which low-level heuristic should be used to generate a new SVM configuration. The low-level heuristics each use different rules to effectively explore the SVM configuration search space. To address bi-objective optimization, the proposed framework adaptively integrates the strengths of decomposition- and Paretobased approaches to approximate the Pareto set of SVM configurations. The effectiveness of the proposed framework has been evaluated on two cyber security problems: Microsoft malware big data classification and anomaly intrusion detection. The obtained results demonstrate that the proposed framework is very effective, if not superior, compared with its counterparts and other algorithms.
    INDEX TERMS: Hyper-heuristics, big data, cyber security, optimisation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 1212 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer