دانلود مقاله انگلیسی رایگان:عامل سازی ماتریسی جفت و مدلسازی عنوان برای واکاوی جنبه - 2018

محرم

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی فناوری اطلاعات رایگان
  • Coupled matrix factorization and topic modeling for aspect mining Coupled matrix factorization and topic modeling for aspect mining

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    Coupled matrix factorization and topic modeling for aspect mining


    ترجمه فارسی عنوان مقاله:

    عامل سازی ماتریسی جفت و مدلسازی عنوان برای واکاوی جنبه


    منبع:

    Information Processing & Management Volume 54, Issue 6, November 2018, Pages 861–873


    نویسنده:

    Aida Valls, Karina Gibert, Alícia Orellana, Salvador Antón-ClavéDing Xiao, Yugang Ji, Yitong Li, Fuzhen Zhuang, Chuan Shi


    چکیده انگلیسی:

    Aspect mining, which aims to extract ad hoc aspects from online reviews and predict rating or opinion on each aspect, can satisfy the personalized needs for evaluation of specific aspect on product quality. Recently, with the increase of related research, how to effectively integrate rating and review information has become the key issue for addressing this problem. Considering that matrix factorization is an effective tool for rating prediction and topic modeling is widely used for review processing, it is a natural idea to combine matrix factorization and topic modeling for aspect mining (or called aspect rating prediction). However, this idea faces several challenges on how to address suitable sharing factors, scale mismatch, and dependency relation of rating and review information. In this paper, we propose a novel model to effectively integrate Matrix factorization and Topic modeling for Aspect rating prediction (MaToAsp). To overcome the above challenges and ensure the performance, MaToAsp employs items as the sharing factors to combine matrix factorization and topic modeling, and introduces an interpretive preference probability to eliminate scale mismatch. In the hybrid model, we establish a dependency relation from ratings to sentiment terms in phrases. The experiments on two real datasets including Chinese Dianping and English Tripadvisor prove that MaToAsp not only obtains reasonable aspect identification but also achieves the best aspect rating prediction performance, compared to recent representative baselines.
    keywords: Topic modeling | Matrix factorization | Aspect mining | Rating prediction


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    حجم فایل: 353 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی: نظر




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
فناوری-اطلاعات
موضوعات
footer