دانلود مقاله انگلیسی رایگان:واکاوی گزینه ای چند زبانه روی یوتیوب - یک تعبیه واژه ای حلقه ای BILSTM  N-gram - 2018

بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده کاوی رایگان
  • Multilingual opinion mining on YouTube – A convolutional N-gram BiLSTM word embedding Multilingual opinion mining on YouTube – A convolutional N-gram BiLSTM word embedding

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    Multilingual opinion mining on YouTube – A convolutional N-gram BiLSTM word embedding


    ترجمه فارسی عنوان مقاله:

    واکاوی گزینه ای چند زبانه روی یوتیوب - یک تعبیه واژه ای حلقه ای BILSTM N-gram


    منبع:

    Information Processing & Management Volume 54, Issue 3, May 2018, Pages 451-462


    نویسنده:

    Huy Tien Nguyen, Minh Le Nguyen


    چکیده انگلیسی:

    Opinion mining in a multilingual and multi-domain environment as YouTube requires models to be robust across domains as well as languages, and not to rely on linguistic resources (e.g. syntactic parsers, POS-taggers, pre-defined dictionaries) which are not always available in many languages. In this work, we i) proposed a convolutional N-gram BiLSTM (CoNBiLSTM) word embedding which represents a word with semantic and contextual information in short and long distance periods; ii) applied CoNBiLSTM word embedding for predicting the type of a comment, its polarity sentiment (positive, neutral or negative) and whether the sentiment is directed toward the product or video; iii) evaluated the efficiency of our model on the SenTube dataset, which contains comments from two domains (i.e. automobile, tablet) and two languages (i.e. English, Italian). According to the experimental results, CoNBiLSTM generally outperforms the approach using SVM with shallow syntactic structures (STRUCT) – the current state-of-the-art sentiment analysis on the SenTube dataset. In addition, our model achieves more robustness across domains than the STRUCT (e.g. 7.47% of the difference in performance between the two domains for our model vs. 18.8% for the STRUCT)
    keywords: Sentiment analysis |Multilingual opinion mining |Convolutional |N-gram word embedding |BiLSTM


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 395 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی: نظر




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-کاوی
موضوعات
footer