دانلود مقاله انگلیسی رایگان:آیا ویژگی های وصفی حاصل از بازدیدهای کاربر بیانگر پراکندگی و شفافیت در سیستمهای توصیه گر می باشد؟ - 2018

دانلود بهترین مقالات isi همراه با ترجمه فارسی

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی تجارت الکترونیک رایگان
  • Do adjective features from user reviews address sparsity and transparency in recommender systems? Do adjective features from user reviews address sparsity and transparency in recommender systems?

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    Do adjective features from user reviews address sparsity and transparency in recommender systems?


    ترجمه فارسی عنوان مقاله:

    آیا ویژگی های وصفی حاصل از بازدیدهای کاربر بیانگر پراکندگی و شفافیت در سیستمهای توصیه گر می باشد؟


    منبع:

    Electronic Commerce Research and Applications Volume 29, May–June 2018, Pages 113-123


    نویسنده:

    Xiaoying Xu, Kaushik Dutta, Chunmian Ge


    چکیده انگلیسی:

    Recommender systems have become increasingly essential in many domains for alleviating the problem of information overload, but existing recommendation techniques suffer from data sparsity and transparency issues. In this paper, we show that the adjective features embedded in user reviews can be used by the recommendation techniques to address the sparsity and transparency problems. We extend the standard frequency-inverse document frequency (TF-IDF) term weighting scheme by introducing nearest neighbors frequency (NNF) to automatically extract high-quality adjective features from user reviews, and incorporate the extracted adjective features into a specific recommendation technique to show effectiveness. The results of experiments conducted on real-world datasets show that the integrated method reduced the prediction errors of the state-of-the-art rating-based method by 19.5% in extremely sparse settings. When compared with the state-of-the-art tag-based method, the proposed method reduced the prediction errors by 11.3%, and increased the interest similarity in similar user identification by 7.1%.
    keywords: Adjective features |Recommender systems |Side information |Sparsity |Transparency |User reviews


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 11
    حجم فایل: 1208 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی: نظر




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
تجارت-الکترونیک
موضوعات
footer