دانلود مقاله انگلیسی رایگان:ساخت شاخصهای فقر فضایی و زمانی از داده های بزرگ

رمضان

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Constructing spatiotemporal poverty indices from big data Constructing spatiotemporal poverty indices from big data
    Constructing spatiotemporal poverty indices from big data

    سال انتشار:

    2017


    عنوان انگلیسی مقاله:

    Constructing spatiotemporal poverty indices from big data


    ترجمه فارسی عنوان مقاله:

    ساخت شاخصهای فقر فضایی و زمانی از داده های بزرگ


    منبع:

    Sciencedirect - Elsevier - Journal of Business Research 70 (2017) 318–327


    نویسنده:

    Christopher Njuguna a,⁎, Patrick McSharry a,


    چکیده انگلیسی:

    Big data offers the potential to calculate timely estimates of the socioeconomic development of a region. Mobile telephone activity provides an enormous wealth of information that can be utilized alongside household surveys. Estimates of poverty and wealth rely on the calculation of features from call detail records (CDRs), however, mobile network operators are reluctant to provide access to CDRs due to commercial and privacy concerns. As a compromise, this study shows that a sparse CDR dataset combined with other publicly available datasets based on satellite imagery can yield competitive results. In particular, a model is built using two CDR-based features, mobile ownership per capita and call volume per phone, combined with normalized satellite nightlight data and population density, to estimate the multi-dimensional poverty index (MPI) at the sector level in Rwanda. This model accurately estimates the MPI for sectors in Rwanda that contain mobile phone cell towers (cross-validated correlation of 0.88)
    Keywords:Call detail record (CDR)|Poverty index|Machine learning|Big data|Socioeconomic level|Rwanda


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 1276 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer