دانلود مقاله انگلیسی رایگان:نمونه سازی شبکه عصبی GPGPU برای یادگیری عمیق تجزیه و تحلیل  داده های بزرگ - 2017

دانلود بهترین مقالات isi همراه با ترجمه فارسی

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Prototyping a GPGPU Neural Network for Deep-Learning Big Data Analysis Prototyping a GPGPU Neural Network for Deep-Learning Big Data Analysis
    Prototyping a GPGPU Neural Network for Deep-Learning Big Data Analysis

    سال انتشار:

    2017


    عنوان انگلیسی مقاله:

    Prototyping a GPGPU Neural Network for Deep-Learning Big Data Analysis


    ترجمه فارسی عنوان مقاله:

    نمونه سازی شبکه عصبی GPGPU برای یادگیری عمیق تجزیه و تحلیل داده های بزرگ


    منبع:

    Sciencedirect - Elsevier - Big Data Research, Uncorrected proof. 10.1016/j.bdr.2017.01.005


    نویسنده:

    Alcides Fonseca, Bruno Cabral


    چکیده انگلیسی:

    Big Data concerns with large-volume complex growing data. Given the fast development of data storage and network, organizations are collecting large ever-growing datasets that can have useful information. In order to extract information from these datasets within useful time, it is important to use distributed and parallel algorithms. One common usage of big data is machine learning, in which collected data is used to predict future behavior. Deep-Learning using Artificial Neural Networks is one of the popular methods for extracting information from complex datasets. Deep-learning is capable of more creating complex models than traditional probabilistic machine learning techniques. This work presents a step-by-step guide on how to prototype a Deep-Learning application that executes both on GPU and CPU clusters. Python and Redis are the core supporting tools of this guide. This tutorial will allow the reader to understand the basics of building a distributed high performance GPU application in a few hours. Since we do not depend on any deep-learning application or framework—we use low-level building blocks—this tutorial can be adjusted for any other parallel algorithm the reader might want to prototype on Big Data. Finally, we will discuss how to move from a prototype to a fully blown production application.
    Keywords:Big-dat|Deep-learning|Prototyping|GPGPU|Cluster|Distributed|Parallel programming


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 485 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer