دانلود مقاله انگلیسی رایگان:QDrill: تجزیه و تحلیل مصرفی توزیع شده مبتنی بر پرس و جو برای داده های بزرگ - 2016

بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • QDrill: Query-Based Distributed Consumable Analytics for Big Data QDrill: Query-Based Distributed Consumable Analytics for Big Data
    QDrill: Query-Based Distributed Consumable Analytics for Big Data

    سال انتشار:

    2016


    عنوان انگلیسی مقاله:

    QDrill: Query-Based Distributed Consumable Analytics for Big Data


    ترجمه فارسی عنوان مقاله:

    QDrill: تجزیه و تحلیل مصرفی توزیع شده مبتنی بر پرس و جو برای داده های بزرگ


    منبع:

    IEEE - 2016 IEEE International Congress on Big Data


    نویسنده:

    Shadi Khalifa, Patrick Martin, Dan Rope, Mike McRoberts, Craig Statchuk


    چکیده انگلیسی:

    Consumable analytics attempt to address the shortage of skilled data analysts in many organizations by offering analytic functionality in a form more familiar to inhouse expertise. Providing consumable analytics for Big Data faces three main challenges. The first challenge is making the analytics algorithms run in a distributed fashion in order to analyze Big Data in a timely manner. The second challenge is providing an easy interface to allow in-house expertise to run these algorithms in a distributed fashion while minimizing the learning cycle and existing code rewrites. The third challenge is running the analytics on data of different formats stored on heterogeneous data stores. In this paper, we address these challenges in the proposed QDrill. We introduce the Analytics Adaptor extension for Apache Drill, a schema-free SQL query engine for nonrelational storage. The Analytics Adaptor introduces the Distributed Analytics Query Language for invoking data mining algorithms from within the Drill standard SQL query statements. The adaptor allows using any sequential singlenode data mining library (e.g. WEKA) and makes its algorithms run in a distributed fashion without having to rewrite them. We evaluate QDrill against Apache Mahout. The evaluation shows that QDrill outperforms Mahout in Updatable model training and scoring phase while almost keeping the same performance for Non-Updatable model training. QDrill is more scalable and offers an easier interface, no storage overhead and the whole algorithms repository of WEKA, with the ability to extend to use algorithms from other data mining libraries.
    Keywords: Big Data| Analytics | SQL | Data Mining | Distributed | Apache Drill | WEKA


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 435 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer