دانلود مقاله انگلیسی رایگان:Spatial-Crowd: A Big Data Framework for Efficient Data Visualization - 2016

محرم

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • Spatial-Crowd: A Big Data Framework for Efficient Data Visualization Spatial-Crowd: A Big Data Framework for Efficient Data Visualization
    Spatial-Crowd: A Big Data Framework for Efficient Data Visualization

    سال انتشار:

    2016


    عنوان انگلیسی مقاله:

    Spatial-Crowd: A Big Data Framework for Efficient Data Visualization


    ترجمه فارسی عنوان مقاله:

    Spatial-Crowd: A Big Data Framework for Efficient Data Visualization


    منبع:

    IEEE - 2016 IEEE International Conference on Big Data (Big Data)


    نویسنده:

    Shahbaz Atta1, Bilal Sadiq1, Akhlaq Ahmad3,5, Sheikh Nasir Saeed1, Emad Felemban


    چکیده انگلیسی:

    Analyzing and visualizing large datasets generated by real-time spatio-temporal activities (e.g. vehicle mobility or large crowd movement) are a very challenging task. Recursive delays both at middleware and front end applications limit the of usefulness of the real-time analysis. In this paper, we present a framework ‘‘Spatial-Crowd’’ that first handles spatial-temporal data acquisition and processing by scaling up the middleware components and its infrastructure. Then, it enables filtering, fixing, enriching and summarising the acquired dataset, readily available for client interfaces which usually are not scalable or built to manage such large datasets. This framework follows published subscriber model and allows users to subscribe to aggregated data streams instead of requesting data in real time. The framework is tested with data generated by a very large simulated dataset and performance showed a significant data reduction on the client side to enhance data visualisation.
    Keywords Bigdata: Data mining| Visualization| Mobility


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 906 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer