دانلود مقاله انگلیسی رایگان:روش ترکیبی برای تشخیص پرت داده های بزرگ سیستم برق SCADA - 2017

بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • A Hybrid Approach for Big Data Outlier Detection from Electric Power SCADA System A Hybrid Approach for Big Data Outlier Detection from Electric Power SCADA System
    A Hybrid Approach for Big Data Outlier Detection from Electric Power SCADA System

    سال انتشار:

    2017


    عنوان انگلیسی مقاله:

    A Hybrid Approach for Big Data Outlier Detection from Electric Power SCADA System


    ترجمه فارسی عنوان مقاله:

    روش ترکیبی برای تشخیص پرت داده های بزرگ سیستم برق SCADA


    منبع:

    IEEE - IEEE LATIN AMERICA TRANSACTIONS, VOL. 15, NO. 1, JAN. 2017


    نویسنده:

    W. Alves, D. Martins, U. Bezerra and A. Klautau1


    چکیده انگلیسی:

    Supervisory control and data acquisition (SCADA) databases have three main features that identify them as big data systems: volume, variety and velocity. SCADAs are extremely important for the safety and secure operation of modern power system and provide essential online information about the power system state to system operators. A current research challenge is to efficiently process this big data, which involves real-time measurements of hundreds of thousands of heterogeneous electrical power system physical measurements. Among the foreseen automation tasks, outlier detection is one of the most important data mining techniques for power systems. However, like others data mining techniques, traditional outlier detection fails when dealing with problems in which the volume and dimensionality of data are as high as the ones observed in a SCADA. This work aims at circumventing these restrictions by presenting a methodology for dealing with SCADA big data that consists of a pre-processing algorithm and hybrid approach outlier detectors. The hybrid approach is assessed using real data from a Brazilian utility company. The results show that the proposed methodology is capable of identifying outliers correlated with important events that affect the system.
    Keywords: Outlier detection | high dimensionality | massive datasets | SCADA | electric power systems.


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 699 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-های-بزرگ
موضوعات
footer