دانلود مقاله انگلیسی رایگان:تشخیص افت مبتنی بر بینایی بر اساس متد طبقه بندی در SVM - 2017

دانلود بهترین مقالات isi همراه با ترجمه فارسی

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • Vision-based pest detection based on SVM classification method Vision-based pest detection based on SVM classification method
    Vision-based pest detection based on SVM classification method

    سال انتشار:

    2017


    عنوان انگلیسی مقاله:

    Vision-based pest detection based on SVM classification method


    ترجمه فارسی عنوان مقاله:

    تشخیص افت مبتنی بر بینایی بر اساس متد طبقه بندی در SVM


    منبع:

    Sciencedirect - Elsevier - Computers and Electronics in Agriculture, 137 (2017) 52-58. doi:10.1016/j.compag.2017.03.016


    نویسنده:

    M.A. Ebrahimi, M.H. Khoshtaghaza, S. Minaei, B. Jamshidi


    چکیده انگلیسی:

    Automatic pest detection is a useful method for greenhouse monitoring against pest attacks. One of the more harmful pests that threaten strawberry greenhouses is thrips (Thysanoptera). Therefore, the main objective of this study is to detect of thrips on the crop canopy images using SVM classification method. A new image processing technique was utilized to detect parasites that may be found on strawberry plants. SVM method with difference kernel function was used for classification of parasites and detection of thrips. The ratio of major diameter to minor diameter as region index as well as Hue, Saturation and Intensify as color indexes were utilized to design the SVM structure. Also, mean square error (MSE), root of mean square error (RMSE), mean absolute error (MAE) and mean percent error (MPE) were used for evaluation of the classification. Results show that using SVM method with region index and intensify as color index make the best classification with mean percent error of less than 2.25%.© 2017 Elsevier B.V. All rights reserved.
    Keywords:Thrips | Image processing | SVM classification | Mean percent error


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 1312 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
بینایی-ماشین
موضوعات
footer