دانلود مقاله انگلیسی رایگان:هنگامی که بینایی دستگاه با بافت شناسی مقابله می شود: ارزیابی مقایسه ای از معماری مدل برای طبقه بندی بخش های بافت شناسی - 2017

تخفیف ماه رمضان

کارابرن عزیز، مقالات isi بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi انتخاب گردیده اند. همچنین تمامی ترجمه ها دارای ضمانت کیفیت بوده و در صورت عدم رضایت کاربر مبلغ عینا عودت داده خواهد شد.

پشتیبانی
اپلیکشن اندروید
آرشیو مقالات
ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیوندهای کاربردی
پیوندهای مرتبط
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • When machine vision meets histology: A comparative evaluation of model architecture for classification of histology sections When machine vision meets histology: A comparative evaluation of model architecture for classification of histology sections
    When machine vision meets histology: A comparative evaluation of model architecture for classification of histology sections

    سال انتشار:

    2017


    عنوان انگلیسی مقاله:

    When machine vision meets histology: A comparative evaluation of model architecture for classification of histology sections


    ترجمه فارسی عنوان مقاله:

    هنگامی که بینایی دستگاه با بافت شناسی مقابله می شود: ارزیابی مقایسه ای از معماری مدل برای طبقه بندی بخش های بافت شناسی


    منبع:

    Sciencedirect - Elsevier - Medical Image Analysis, 35 (2016) 530-543. doi:10.1016/j.media.2016.08.010


    نویسنده:

    Cheng Zhong, Ju Han , Alexander Borowsky , Bahram Parvin , Yunfu Wang, Hang Chang


    چکیده انگلیسی:

    Article history:Received 25 February 2016Revised 12 August 2016Accepted 26 August 2016Available online 9 September 2016Keywords:Computational histopathology ClassificationUnsupervised feature learning Sparse feature encoderClassification of histology sections in large cohorts, in terms of distinct regions of microanatomy (e.g., stromal) and histopathology (e.g., tumor, necrosis), enables the quantification of tumor composition, and the construction of predictive models of genomics and clinical outcome. To tackle the large technical vari- ations and biological heterogeneities, which are intrinsic in large cohorts, emerging systems utilize either prior knowledge from pathologists or unsupervised feature learning for invariant representation of the underlying properties in the data. However, to a large degree, the architecture for tissue histology classi- fication remains unexplored and requires urgent systematical investigation. This paper is the first attempt to provide insights into three fundamental questions in tissue histology classification: I. Is unsupervised feature learning preferable to human engineered features? II. Does cellular saliency help? III. Does the sparse feature encoder contribute to recognition? We show that (a) in I, both Cellular Morphometric Fea- ture and features from unsupervised feature learning lead to superior performance when compared to SIFT and [Color, Texture]; (b) in II, cellular saliency incorporation impairs the performance for systems built upon pixel-/patch-level features; and (c) in III, the effect of the sparse feature encoder is correlated with the robustness of features, and the performance can be consistently improved by the multi-stage ex- tension of systems built upon both Cellular Morphmetric Feature and features from unsupervised feature learning. These insights are validated with two cohorts of Glioblastoma Multiforme (GBM) and Kidney Clear Cell Carcinoma (KIRC).© 2016 Elsevier B.V. All rights reserved.
    Keywords: Computational histopathology | Classification | Unsupervised feature learning | Sparse feature encoder


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 2978 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




آرشیو کامل مقالات

اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

این مقاله را در فیس بوک به اشتراک بگذارید این مقاله را در توییتر به اشتراک بگذارید این مقاله را در لینکداین به اشتراک بگذارید این مقاله را در گوگل پلاس به اشتراک بگذارید این مقاله را در زینگ به اشتراک بگذارید این مقاله را در تلگرام به اشتراک بگذارید

تعداد نظرات : 0

الزامی
الزامی
الزامی
بینایی-ماشین
موضوعات
footer