دانلود مقاله و خرید ترجمه:درآوردن شبکه های اجتماعی دارای مقیاس آزاد از حالت بی نامی با استفاده از روش قسمت بندی طیفی - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
مقالات ترجمه شده شبکه های اجتماعی ( Social Networks )
  • De-anonymizing Scale-Free Social Networks by Using Spectrum Partitioning Method درآوردن شبکه های اجتماعی دارای مقیاس آزاد از حالت بی نامی با استفاده از روش قسمت بندی طیفی
    دانلود مقاله | مقاله انگلیسی رایگان | خرید ترجمه فارسی مقاله

    سال انتشار:

    2019


    ترجمه فارسی عنوان مقاله:

    درآوردن شبکه های اجتماعی دارای مقیاس آزاد از حالت بی نامی با استفاده از روش قسمت بندی طیفی


    عنوان انگلیسی مقاله:

    De-anonymizing Scale-Free Social Networks by Using Spectrum Partitioning Method


    منبع:

    ScienceDirect -Procedia Computer Science 147 (2019) 441–445


    نویسنده:

    Qi Sun, Jiguo Yu, Honglu Jiang, Yixian Chen, Xiuzhen Cheng


    چکیده انگلیسی:

    Social network data is widely shared, forwarded and published to third parties, which led to the risks of privacy disclosure. Even thought the network provider always perturbs the data before publishing it, attackers can still recover anonymous data according to the collected auxiliary information. In this paper, we transform the problem of de-anonymization into node matching problem in graph, and the de-anonymization method can reduce the number of nodes to be matched at each time. In addition, we use spectrum partitioning method to divide the social graph into disjoint subgraphs, and it can effectively be applied to large-scale social networks and executed in parallel by using multiple processors. Through the analysis of the influence of power-law distribution on de-anonymization, we synthetically consider the structural and personal information of users which made the feature information of the user more practical.


    چکیده فارسی:

    داده های شبکه های اجتماعی به صورت گسترده ای با بخشهای ثالث به اشتراک گذاشته می شوند، ارسال می شوند و منتشر می شوند که منجر به ایجاد خطر افشای اطلاعات محرمانه می شود. اگرچه تامین کننده شبکه همیشه قبل از انتشار آن نگران داده ها می باشد اما حمله کننده ها می توانند هنوزهم داده های بی نام را برطبق اطلاعات کمکی جمع آوری شده بازیابی کنند. ما در این مقاله مشکل از حالت بی نام درآوردن را به مشکل هماهنگ سازی گره در گراف تبدیل می کنیم و روش درآوردن از حالت بی نامی می تواند تعداد گره هایی که باید در هر بار هماهنگ سازی شوند را کاهش می دهد. به علاوه، ما از روش قسمت بندی طیفی برای تقسیم بندی گراف اجتماعی به زیرگراف های گسسته استفاده می کنیم و این روش می تواند به صورت موثری برای شبکه های اجتماعی دارای مقیاس بزرگ به کار برده شود و به صورت موازی با استفاده از چندین پردازشگر اجرا شود. درطی تحلیل تاثیر توزیع قانون توانی روی درآوردن از حالت بی نامی، ما از روی قواعد ترکیبی اطلاعات ساختاری و فردی کاربران را بررسی می کنیم که این کار اطلاعات مشخصه کاربر را عملی تر می سازد.


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 5
    تعداد صفحات فایل doc فارسی(با احتساب مراجع): 15

    وضعیت ترجمه عناوین تصاویر و جداول: به صورت کامل ترجمه شده است

    وضعیت ترجمه متون داخل تصاویر و جداول: به صورت کامل ترجمه شده است

    حجم فایل: 273 کیلوبایت


    قیمت: 20000 تومان  16000 تومان(20% تخفیف)


    توضیحات اضافی: نظر




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی