دانلود مقاله و خرید ترجمه:ویژگی‌های توجه عمیق برای جداسازی پروستات در فراوادرمانی - 2018
دانلود بهترین مقالات isi همراه با ترجمه فارسی
مقالات ترجمه شده بهداشت و درمان ( Healthcare )
  • Deep Attentional Features for Prostate Segmentation in Ultrasound ویژگی‌های توجه عمیق برای جداسازی پروستات در فراوادرمانی

    سال انتشار:

    2018


    ترجمه فارسی عنوان مقاله:

    ویژگی‌های توجه عمیق برای جداسازی پروستات در فراوادرمانی


    عنوان انگلیسی مقاله:

    Deep Attentional Features for Prostate Segmentation in Ultrasound


    منبع:

    Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 pp 523-530


    نویسنده:

    Yi Wang1,2, Zijun Deng3, Xiaowei Hu4, Lei Zhu4,5(B), Xin Yang4, Xuemiao Xu3, Pheng-Ann Heng4, and Dong Ni1,2


    چکیده انگلیسی:

    Automatic prostate segmentation in transrectal ultrasound (TRUS) is of essential importance for image-guided prostate biopsy and treatment planning. However, developing such automatic solutions remains very challenging due to the ambiguous boundary and inhomogeneous intensity distribution of the prostate in TRUS. This paper develops a novel deep neural network equipped with deep attentional feature (DAF) modules for better prostate segmentation in TRUS by fully exploiting the complementary information encoded in different layers of the convolutional neural network (CNN). Our DAF utilizes the attention mechanism to selectively leverage the multi-level features integrated from different layers to refine the features at each individual layer, suppressing the non-prostate noise at shallow layers of the CNN and increasing more prostate details into features at deep layers. We evaluate the efficacy of the proposed network on challenging prostate TRUS images, and the experimental results demonstrate that our network outperforms stateof-the-art methods by a large margin.


    چکیده فارسی:

    جداسازی خودکار پروستات در فراوادرمانی ترانس‌رکتال (TRUS) برای بافت‌برداری تصاویر هدایت‌شده‌ی پروستات و برنامه‌ریزی درمان بسیار حائر اهمیت می‌باشد. همچنین به‌دلیل مرز مبهم و توزیع شدت غیرهمگن پروستات در TRUS، توسعه دادن اینگونه راه‌حل‌های خودکار هنوز چالش‌برانگیز باقی‌مانده است. در این پژوهش، یک شبکه‌ی عصبی عمیق جدید که با ماژول‌های ویژگی توجه عمیق (DAF) مجهز شده است، برای جداسازی بهتر پروستات در TRUS با استفاده از استخراج کردن اطلاعات مکمل کدگذاری‌شده در لایه‌های مختلف شبکه‌ی عصبی پیچشی (CNN) توسعه داده شده است. همچنین DAF متعلق به ما جهت انتخاب قدرت نفوذ ویژگی‌های چندگانه‌ی ادغام‌شده از طریق لایه‌های مختلف برای تصحیح کردن ویژگی‌های هر لایه‌ی منحصربه‌فرد، متوقف کردن سرو‌صدای غیرپروستات در لایه‌های کم‌عمق CNN و افزایش دادن تعداد جزئیات پروستات درون ویژگی‌های لایه‌های عمیق از مکانیزم توجه استفاده می‌کند. ما تأثیر شبکه‌ی پیشنهادی را بر روی تصاویر چالش‌بر‌انگیز TRUS پروستات و همچنین نتایج تجربی ارزیابی می‌کنیم تا عملکرد بهتر روش‌های نوین را به‌وسیله‌ی یک تفاوت مزیت بزرگ نشان دهیم.


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    تعداد صفحات فایل doc فارسی(با احتساب مراجع): 14

    وضعیت ترجمه عناوین تصاویر و جداول: به صورت کامل ترجمه شده است

    وضعیت ترجمه متون داخل تصاویر و جداول: به صورت کامل ترجمه شده است

    حجم فایل: 502 کیلوبایت


    قیمت: 24000 تومان  19200 تومان(20% تخفیف)


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی