دانلود مقاله و خرید ترجمه:یادگیری عمیق(ژرف) در تجزیه و تحلیل کلان داده ( داده های بزرگ): یک مطالعه تطبیقی - 2017
دانلود بهترین مقالات isi همراه با ترجمه فارسی
مقالات ترجمه شده یادگیری عمیق ( deep learning )
  • Deep learning in big data Analytics: A comparative study یادگیری عمیق(ژرف) در تجزیه و تحلیل کلان داده ( داده های بزرگ): یک مطالعه تطبیقی

    سال انتشار:

    2017


    ترجمه فارسی عنوان مقاله:

    یادگیری عمیق(ژرف) در تجزیه و تحلیل کلان داده ( داده های بزرگ): یک مطالعه تطبیقی


    عنوان انگلیسی مقاله:

    Deep learning in big data Analytics: A comparative study


    منبع:

    Sciencedirect - Elsevier - Computers and Electrical Engineering 000 (2017) 1–13


    نویسنده:

    Bilal Jan a, Haleem Farman b, Murad Khan c, Muhammad Imran c, Ihtesham Ul Islam c, Awais Ahmad d,∗, Shaukat Ali b, Gwanggil Jeon


    چکیده انگلیسی:

    Deep learning methods are extensively applied to various fields of science and engineering such as speech recognition, image classifications, and learning methods in language processing. Similarly, traditional data processing techniques have several limitations of processing large amount of data. In addition, Big Data analytics requires new and sophisticated algorithms based on machine and deep learning techniques to process data in real-time with high accuracy and efficiency. However, recently, research incorporated various deep learning techniques with hybrid learning and training mechanisms of processing data with high speed. Most of these techniques are specific to scenarios and based on vector space thus, shows poor performance in generic scenarios and learning features in big data. In addition, one of the reason of such failure is high involvement of humans to design sophisticated and optimized algorithms based on machine and deep learning techniques. In this article, we bring forward an approach of comparing various deep learning techniques for processing huge amount of data with different number of neurons and hidden layers. The comparative study shows that deep learning techniques can be built by introducing a number of methods in combination with supervised and unsupervised training techniques.
    Keywords: Big data | Deep learning | Deep belief networks | Convolutional Neural Networks


    چکیده فارسی:

    روش های فراگیری عمیق به طور گسترده ای در زمینه های مختلف علوم و مهندسی مانند تشخیص گفتار، طبقه بندی تصویر و روش های یادگیری در پردازش زبان مورد استفاده قرار می گیرد. به طور مشابه، تکنیک های پردازش داده های سنتی محدودیت های زیادی برای پردازش مقدار زیادی داده ها دارند. علاوه بر این، تجزیه و تحلیل داده های بزرگ نیاز به الگوریتم های جدید و پیچیده بر اساس تکنیک های یادگیری ماشین و عمیق برای پردازش داده ها در زمان واقعی با دقت و کارایی بالا دارد . با این حال، به تازگی، تحقیقات مختلف تکنیک های یادگیری عمیق با استفاده از یادگیری ترکیبی و مکانیسم های آموزش پردازش داده ها با سرعت بالا تلفیق شده است. بنابراین بیشتر این تکنیک ها به سناریوها اختصاص دارد و براساس فضای بردار، عملکرد ضعیف در سناریوهای عمومی و ویژگی های یادگیری را در داده های بزرگ نشان می دهد. علاوه بر این، یکی از دلایل چنین ضعف، دخالت زیاد انسانها در طراحی الگوریتم های پیچیده و بهینه شده بر اساس تکنیک های یادگیری ماشین و عمیق است. در این مقاله، ما روشی را برای مقایسه روش های مختلف یادگیری عمیق برای پردازش داده های عظیم با تعداد زیادی از نورون ها و لایه های پنهان ارائه می دهیم. مطالعه تطبیقی نشان می دهد که تکنیک های یادگیری عمیق می تواند با معرفی چندین روش در ترکیب با تکنیک های آموزش تحت نظارت و بدون نظارت ایجاد شود.
    کلمات کلیدی: داده های بزرگ | یادگیری عمیق | شبکه های اعتقاد عمیق | شبکه های عصبی تکاملی


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    تعداد صفحات فایل doc فارسی(با احتساب مراجع): 31

    وضعیت ترجمه عناوین تصاویر و جداول: به صورت کامل ترجمه شده است

    وضعیت ترجمه متون داخل تصاویر و جداول: به صورت کامل ترجمه شده است

    حجم فایل: 2683 کیلوبایت


    قیمت: 36000 تومان  28800 تومان(20% تخفیف)


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی