دانلود مقاله و خرید ترجمه:روش یادگیری متخاصم عمیق و چند مرحله ای ، برای باز شناسی شخص مبتنی بر ویدئو - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی

با سلام خدمت کاربران عزیز، به اطلاع می رساند ترجمه مقالاتی که سال انتشار آن ها زیر 2008 می باشد رایگان بوده و میتوانید با وارد شدن در صفحه جزییات مقاله به رایگان ترجمه را دانلود نمایید.

مقالات ترجمه شده یادگیری عمیق ( deep learning )
  • Few-Shot Deep Adversarial Learning for Video-Based Person Re-Identification روش یادگیری متخاصم عمیق و چند مرحله ای ، برای باز شناسی شخص مبتنی بر ویدئو

    سال انتشار:

    2020


    ترجمه فارسی عنوان مقاله:

    روش یادگیری متخاصم عمیق و چند مرحله ای ، برای باز شناسی شخص مبتنی بر ویدئو


    عنوان انگلیسی مقاله:

    Few-Shot Deep Adversarial Learning for Video-Based Person Re-Identification


    منبع:

    IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL: 29, 2020


    نویسنده:

    Lin Wu , Yang Wang , Hongzhi Yin , Meng Wang , and Ling Shao


    چکیده انگلیسی:

    Video-based person re-identification (re-ID) refers to matching people across camera views from arbitrary unaligned video footages. Existing methods rely on supervision signals to optimise a projected space under which the distances between inter/intra-videos are maximised/minimised. However, this demands exhaustively labelling people across camera views, rendering them unable to be scaled in large networked cameras. Also, it is noticed that learning effective video representations with view invariance is not explicitly addressed for which features exhibit different distributions otherwise. Thus, matching videos for person re-ID demands flexible models to capture the dynamics in time-series observations and learn view-invariant representations with access to limited labeled training samples. In this paper, we propose a novel few-shot deep learning approach to video-based person re-ID, to learn comparable representations that are discriminative and viewinvariant. The proposed method is developed on the variational recurrent neural networks (VRNNs) and trained adversarially to produce latent variables with temporal dependencies that are highly discriminative yet view-invariant in matching persons. Through extensive experiments conducted on three benchmark datasets, we empirically show the capability of our method in creating view-invariant temporal features and state-of-the-art performance achieved by our method.
    Index Terms: Video-based person re-identification | variational recurrent neural networks | adversarial learning.


    چکیده فارسی:

    بازشناسی شخص (re-ID) بر مبنای ویدئو را میتوان به عنوان فرآیند تطبیق تصویر یک فرد از طریق دیدهای مختلف دوربین که به وسیله ی تصاویر ویدئویی ناهم راستا گرفته شده است، در نظر گرفت. روش هایی که برای اینکار وجود دارند، از سیگنال های نظارتی برای بهینه سازی فضای پیش روی دوربین استفاده نموده که تحت این شرایط، فاصله ی بین ویدئوها بیشینه سازی/کمینه سازی میشود. البته این کار باعث شده تا برچسب گذاری افراد در سطح دید های ویدئو بسیار زیاد شده و باعث شده تا نتوان آنها را به خوبی بر روی دوربین های شبکه بندی شده ی بزرگ مقیاس بندی کرد. همچنین خاطر نشان شده است که یادگیری نمایش های مختلف ویدئویی و آنهم به وسیله ی عدم تغییر دید دوربین را نمیتوان انجام داد چرا که ویژگی های تصویر، هر کدام دارای توزیع های مختلف مختص به خود میباشند. بنابراین تطبیق ویدئوها برای باز شناسی افراد، نیاز به مدل هایی انعطاف پذیر برای بدست آوردن پویایی های موجود در مشاهدات ویدئویی و یادگیری دیدهای ثابت از طریق دسترسی به نمونه های آموزشی برچسب دار و محدود دارد. در این مقاله قصد داریم یک روش مبتنی بر یادگیری عمیق چند مرحله ای را برای باز شناسی یک فرد بر مبنای ویدئو ارائه دهیم و بتوانیم به یادگیری دیدهای قابل قیاسی از این فرد که متمایز هستند بپردازیم. روش پیشنهادی را بر روی شبکه های عصبی باز رخداد گر متغیر (VRNN) توسعه داده ایم و آنرا به منظور ایجاد متغیر های پنهان با وابستگی های موقت که بسیار متمایز بوده ولی در تطبیق تصاویر فرد از نظر دید ثابت میباشد، مورد یادگیری قرار داده ایم. آزمایش های وسیعی را بر روی سه مجموعه ی داده ای بنچ مارک انجام داده ایم و به صورت تجربی به اثبات قابلیت روش پیشنهادی مان در ایجاد ویژگی های موقتی و با یک دید ثابت و کارائی بالایی که به وسیله ی آن بدست آمده است خواهیم پرداخت.
    کلمات کلیدی: باز شناسی شخص مبتنی بر ویدئو | شبکه های عصبی باز رخدادگر متغیر | یادگیری متخاصم


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    تعداد صفحات فایل doc فارسی(با احتساب مراجع): 42

    وضعیت ترجمه عناوین تصاویر و جداول: به صورت کامل ترجمه شده است

    وضعیت ترجمه متون داخل تصاویر و جداول: به صورت کامل ترجمه شده است

    حجم فایل: 871 کیلوبایت


    قیمت: 33000 تومان    26400 تومان (20 % تخفیف)


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi