دانلود مقاله و خرید ترجمه:تشخیص چند نمایی چهره با استفاده از شبکه های عصبی عمیق - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
مقالات ترجمه شده پردازش تصویر ( Image Processing )
  • Multi-view face recognition using deep neural networks تشخیص چند نمایی چهره با استفاده از شبکه های عصبی عمیق

    دسته بندی:

    پردازش تصویر - Image Processing


    سال انتشار:

    2020


    ترجمه فارسی عنوان مقاله:

    تشخیص چند نمایی چهره با استفاده از شبکه های عصبی عمیق


    عنوان انگلیسی مقاله:

    Multi-view face recognition using deep neural networks


    منبع:

    Sciencedirect - Elsevier - Future Generation Computer Systems 111 (2020) 375–380


    نویسنده:

    Feng Zhao a, Jing Li a, Lu Zhang a,b, Zhe Li a, Sang-Gyun Na


    چکیده انگلیسی:

    F Face recognition has been widely used in modern intelligent systems, such as smart video surveillance, online payment, and intelligent access control system. Existing face recognition algorithms are prone to be attacked by various face presentation attacks (face-PAs), such as printed paper, video replay, and silicone masks. To optimally handle the aforementioned problems, we formulate a novel deep architecture to increase the accuracy of multi-view human face recognition. In particular, in the first place, a novel deep neural network is built for deeply encoding the face regions, where a novel face alignment algorithm is employed to localize the key points inside faces. Subsequently, we utilize the well-known PCA for reducing the dimensionality of the deep features and simultaneously, removing the redundant and contaminated visual features. Thereafter, we propose a joint Bayesian framework in order to evaluate the similarity of feature vectors and highly competitive face classification accuracy can be achieved. Comprehensive experiments were conducted on our compiled CAS-PEAL dataset and achieved a 98.52% face recognition performance. Moreover, our proposed face recognition system can robustly handle various face recognition attack under various contexts.
    Keywords: Deep learning | Face region | Face image recognition | Deep neural network | PCA feature dimension reduction


    چکیده فارسی:

    تشخیص چهره به طور گسترده در سیستم های هوشمندی مدرن مانند نظارت تصویری هوشمند، پرداخت آنلاین و سیستم دسترسی هوشمند مورد استفاده قرار گرفته است. الگوریتم های تشخیص چهره فعلی در معرض حمله انواع حملات ارائه چهره می باشند؛ کاغذ چاپ شده، بازپخش ویدئویی و ماسک های سیلیکونی از این جمله حملات اند. ما به منظور مدیریت بهینه مشکلات مذکور، معماری عمیق و جدیدی را صورت بندی نموده ایم که دقت تشخیص چندنمایی چهره انسان را افزایش می دهد. به ویژه، در وهله اول، شبکه عصبی عمیق و جدیدی به منظور رمزگذاری عمیق نواحی صورت ساخته شده است که در آن الگوریتم جدید تنظیم و تطبیق چهره به کار رفته است تا بر روی نقاط کلیدی موجود در چهره متمرکز گردد. بعد از آن، فناوری شناخته شده PCA را برای کم کردن ابعاد ویژگی های عمیق و به طور همزمان، حذف ویژگی های تصویری ناخالص و غیرضروری به کار برده ایم. سپس چارچوب اتصال بیزی را برای ارزیابی شباهت بردارهای ویژگی و دقت بسیار رقابتی دسته بندی چهره ها که می توان به آن دست یافت مطرح نمودیم. آزمایشات جامع بر روی مجموعه داده های کامپایل شده کاس-پیل انجام گرفته و عملکرد تشخیص چهره به میزان 98.52% موفقیت آمیز بود. علاوه بر این، سامانه پیشنهادی تشخیص چهره، به صورت سفت و سخت قادر به مدیریت حملات مختلف تشخیص چهره در زمینه های مختلف می باشد.
    کلمات کلیدی: یادگیری عمیق | ناحیه صورت | تشخیص تصویر چهره | شبکه عصبی عمیق | کاهش ابعاد ویژگی PCA


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    تعداد صفحات فایل doc فارسی(با احتساب مراجع): 19

    وضعیت ترجمه عناوین تصاویر و جداول: به صورت کامل ترجمه شده است

    وضعیت ترجمه متون داخل تصاویر و جداول: به صورت کامل ترجمه شده است

    حجم فایل: 5341 کیلوبایت


    قیمت: 56550 تومان   


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 6352 :::::::: بازدید دیروز: 1612 :::::::: بازدید کل: 7964 :::::::: افراد آنلاین: 26