دانلود مقاله و خرید ترجمه:پیش بینی قیمت بیت کوین با استفاده از یادگیری ماشین: یک رویکر برای مهندسی ابعاد نمونه - 2020
دانلود بهترین مقالات isi همراه با ترجمه فارسی
مقالات ترجمه شده یادگیری ماشین ( machine learning )
  • Bitcoin price prediction using machine learning: An approach to sample dimension engineering پیش بینی قیمت بیت کوین با استفاده از یادگیری ماشین: یک رویکر برای مهندسی ابعاد نمونه
    دانلود مقاله | مقاله انگلیسی رایگان | خرید ترجمه فارسی مقاله

    سال انتشار:

    2020


    ترجمه فارسی عنوان مقاله:

    پیش بینی قیمت بیت کوین با استفاده از یادگیری ماشین: یک رویکر برای مهندسی ابعاد نمونه


    عنوان انگلیسی مقاله:

    Bitcoin price prediction using machine learning: An approach to sample dimension engineering


    منبع:

    Sciencedirect - Elsevier - Journal of Computational and Applied Mathematics 365 (2020) 112395


    نویسنده:

    Zheshi Chen, Chunhong Li, Wenjun Sun


    چکیده انگلیسی:

    After the boom and bust of cryptocurrencies’ prices in recent years, Bitcoin has been increasingly regarded as an investment asset. Because of its highly volatile nature, there is a need for good predictions on which to base investment decisions. Although existing studies have leveraged machine learning for more accurate Bitcoin price prediction, few have focused on the feasibility of applying different modeling techniques to samples with different data structures and dimensional features. To predict Bitcoin price at different frequencies using machine learning techniques, we first classify Bitcoin price by daily price and high-frequency price. A set of high-dimension features including property and network, trading and market, attention and gold spot price are used for Bitcoin daily price prediction, while the basic trading features acquired from a cryptocurrency exchange are used for 5-minute interval price prediction. Statistical methods including Logistic Regression and Linear Discriminant Analysis for Bitcoin daily price prediction with high-dimensional features achieve an accuracy of 66%, outperforming more complicated machine learning algorithms. Compared with benchmark results for daily price prediction, we achieve a better performance, with the highest accuracies of the statistical methods and machine learning algorithms of 66% and 65.3%, respectively. Machine learning models including Random Forest, XGBoost, Quadratic Discriminant Analysis, Support Vector Machine and Long Short-term Memory for Bitcoin 5-minute interval price prediction are superior to statistical methods, with accuracy reaching 67.2%. Our investigation of Bitcoin price prediction can be considered a pilot study of the importance of the sample dimension in machine learning techniques.
    Keywords: Sample dimension engineering | Occam’s Razor principle | Bitcoin price prediction | Machine learning algorithms


    چکیده فارسی:

    پس از فراز و فرودهای قیمت های ارزهای رمزنگاری شده در سال های اخیر، بیت کوین به صورت فزاینده ای به عنوان یک دارایی برای سرمایه گذاری در نظر گرفته شده است. به خاطر ماهیت بسیار بی ثبات قیمت بیت کوین، لازم است تا پیش بینی های مناسبی صورت گیرد تا، بر اساس آن، بتوان در مورد سرمایه گذاری تصمیم گیری نمود. با وجودی که تحقیقات جاری برای پیش بینی دقیق تر قیمت بیت کوین از یادگیری ماشین استفاده کرده اند، تعداد اندکی از آنها به امکان استفاده از تکنیک های مختلف مدل سازی برای نمونه هایی با ساختار داده ای و ویژگی های بعدی مختلف توجه کرده اند. به منظور پیش بینی بهای بیت کوین در فرکانس های مختلف با استفاده از تکنیک های یادگیری ماشین، ابتدا قیمت بیت کوین را بر اساس قیمت روزانه و قیمت فرکانس بالا طبقه بندی می کنیم. مجموعه ای از ویژگی های با ابعاد بالا از جمله دارایی و شبکه، معاملات و بازار، توجه و قیمت لحظه ای طلا برای پیش بینی قیمت روزانه بیت کوین استفاده می شود، در حالی که ویژگی های اصلی تجارت که از تبادل ارز رمزنگاری شده حاصل شده اند، برای پیش بینی قیمت در فواصل 5 دقیقه ای استفاده می شوند. روشهای آماری شامل رگرسیون لجستیک و آنالیز افتراقی خطی برای پیش بینی قیمت روزانه بیت کوین با ویژگی های ابعاد بالا، به دقت 66٪ رسیده و از الگوریتم های یادگیری پیچیده تر ماشین پیشی می گیرند. در مقایسه با نتایج مبنا برای پیش بینی قیمت روزانه، با بالاترین دقت در روش های آماری و الگوریتم های یادگیری ماشینی، به ترتیب 66٪ و 3/65٪، به عملکرد بهتری دست پیدا می کنیم. مدلهای یادگیری ماشینی، شامل جنگل تصادفی ،XGBoost، آنالیز افتراقی درجه دو، ماشین بردار پشتیبان و حافظه کوتاه مدت بلند برای پیش بینی قیمت 5 دقیقه ای بیت کوین که دقت آنها به 67.2% رسیده است، از روشهای آماری بهتر هستند. بررسی ما در مورد پیش بینی قیمت بیت کوین را می توان مطالعه ای مقدماتی در مورد اهمیت ابعاد نمونه در تکنیک های یادگیری ماشین در نظر گرفت.
    کلمات کلیدی: مهندسی ابعاد نمونه | اصل Occam’s Razor | پیش بینی قیمت بیت کوین | الگوریتم های یادگیری ماشین


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 13
    تعداد صفحات فایل doc فارسی(با احتساب مراجع): 32

    وضعیت ترجمه عناوین تصاویر و جداول: به صورت کامل ترجمه شده است

    وضعیت ترجمه متون داخل تصاویر و جداول: به صورت کامل ترجمه شده است

    حجم فایل: 337 کیلوبایت


    قیمت: 39000 تومان    31200 تومان (20 % تخفیف)


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi