با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت مقاله خود را دریافت کنید (تا مشکل رفع گردد). با تشکر از صبوری شما!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
دسته بندی:
پردازش تصویر - Image Processing
سال انتشار:
2019
ترجمه فارسی عنوان مقاله:
تشخیص چهره عمیق با استفاده از داده های ناقص صورت
عنوان انگلیسی مقاله:
Deep face recognition using imperfect facial data
منبع:
Sciencedirect - Elsevier - Future Generation Computer Systems 99 (2019) 213–225
نویسنده:
Ali Elmahmudi, Hassan Ugail
چکیده انگلیسی:
Today, computer based face recognition is a mature and reliable mechanism which is being practically
utilised for many access control scenarios. As such, face recognition or authentication is predominantly
performed using ‘perfect’ data of full frontal facial images. Though that may be the case, in reality, there
are numerous situations where full frontal faces may not be available — the imperfect face images that
often come from CCTV cameras do demonstrate the case in point. Hence, the problem of computer
based face recognition using partial facial data as probes is still largely an unexplored area of research.
Given that humans and computers perform face recognition and authentication inherently differently,
it must be interesting as well as intriguing to understand how a computer favours various parts of
the face when presented to the challenges of face recognition. In this work, we explore the question
that surrounds the idea of face recognition using partial facial data. We explore it by applying novel
experiments to test the performance of machine learning using partial faces and other manipulations
on face images such as rotation and zooming, which we use as training and recognition cues. In
particular, we study the rate of recognition subject to the various parts of the face such as the eyes,
mouth, nose and the cheek. We also study the effect of face recognition subject to facial rotation as
well as the effect of recognition subject to zooming out of the facial images. Our experiments are
based on using the state of the art convolutional neural network based architecture along with the
pre-trained VGG-Face model through which we extract features for machine learning. We then use two
classifiers namely the cosine similarity and the linear support vector machines to test the recognition
rates. We ran our experiments on two publicly available datasets namely, the controlled Brazilian FEI
and the uncontrolled LFW dataset. Our results show that individual parts of the face such as the eyes,
nose and the cheeks have low recognition rates though the rate of recognition quickly goes up when
individual parts of the face in combined form are presented as probes.
Keywords: Face recognition | Convolutional neural networks | Deep learning | Cosine similarity
چکیده فارسی:
امروزه تشخیص چهره مبتنی بر کامپیوتر یک مکانیسم بالغ و قابل اطمینان است که به طور عمده برای بسیاری از سناریوهای کنترل دسترسی مورد استفاده قرار می گیرد. به این ترتیب که تشخیص چهره یا احراز هویت عمدتا با استفاده از داده های کامل از تصاویر جلوی صورت انجام می شود. اگرچه ممکن است در عمل کمتر این مورد پیش بیاید، اما موقعیت های متعددی وجود دارد که ممکن است تصاویر کامل جلوی صورت در دسترس نباشد - تصاویر چهره ناقص که اغلب از دوربین های مدار بسته می آیند، شامل این موارد هستند. از این رو، مسئله تشخیص چهره مبتنی بر رایانه با استفاده از اطلاعات جزئی به عنوان شاخص هنوز هم تا حد زیادی یک حوزه تحقیق ناشناخته است. با توجه به این که به طور ذاتی انسانها و رایانه ها در تشخیص چهره و احراز هویت متفاوت هستند، باید جالب و جذاب باشد که بدانند یک رایانه زمانی که با یک چالش تشخیص چهره روبرو می شود چگونه به اجرای مختلف صورت توجه می کند. در این کار، ما این پرسش را بررسی میکنیم که ایده تشخیص چهره با استفاده از اطلاعات جزئی صورت را در بر می گیرد. ما این مسئله را با استفاده از آزمایش های جدید برای تست عملکرد یادگیری ماشین با استفاده از تصاویر جزئی چهره و دستکاری های دیگر در تصاویر چهره مانند چرخش و زوم، که به عنوان سرنخهای آموزش و تشخیص استفاده شده است، مورد بررسی قرار دادیم. به طور ویژه، ما میزان تشخیص را با توجه به قسمت های مختلف صورت مانند چشم ها، دهان، بینی و گونه مطالعه می کنیم. ما همچنین به بررسی تشخیص چهره با چرخش صورت و بزرگنمایی تصویر صورت پرداختیم. آزمایشات ما بر اساس استفاده از معماری مبتنی بر شبکه عصبی پیچشی پیشرفته با مدل VGG-Face آموزش دیده از قبل است که از طریق آن ویژگی ها را برای یادگیری ماشین استخراج می کنیم. سپس از دو طبقه بند، يعني شباهت کوسینوسی و ماشین های بردار برای بررسی نرخهای تشخیص استفاده مي شود. ما آزمایش های ما را روی دو مجموعه داده عمومی که شامل FEI کنترل شده برزیل و مجموعه داده کنترل نشده LFW هستند انجام دادیم. نتایج ما نشان می دهد که بخش های منحصر به فرد چهره مانند چشم ها، بینی ها و گونه ها دارای نرخ تشخیص کم هستند، اما زمانی که بخش های فردی صورت ترکیب شده به عنوان شاخص معرفی می شوند، میزان تشخیص به سرعت در حال افزایش است.
کلمات کلیدی: تشخیص چهره | شبکه های عصبی کانولوشنال | یادگیری عمیق | شباهت کسینوسی
حجم فایل: 2722 کیلوبایت
قیمت: 46800 تومان
توضیحات اضافی: یک مقاله جدید و عالی از مجله معتبر Future Generation Computer Systems
تعداد نظرات : 0