دانلود مقاله انگلیسی رایگان:یک معماری شبکه عصبی پویا با ایمنولوژی بهینه سازی برای پیش بینی داده های آب و هوایی - 2018
رمضان 2
دانلود مقاله انگلیسی داده های بزرگ رایگان
  • A dynamic neural network architecture with immunology inspired optimization for weather data forecasting A dynamic neural network architecture with immunology inspired optimization for weather data forecasting
    A dynamic neural network architecture with immunology inspired optimization for weather data forecasting

    سال انتشار:

    2018


    عنوان انگلیسی مقاله:

    A dynamic neural network architecture with immunology inspired optimization for weather data forecasting


    ترجمه فارسی عنوان مقاله:

    یک معماری شبکه عصبی پویا با ایمنولوژی بهینه سازی برای پیش بینی داده های آب و هوایی


    منبع:

    Sciencedirect - Elsevier - Big Data Research, Accepted manuscript: 10:1016/j:bdr:2018:04:002


    نویسنده:

    Abir Jaafar Hussain, Panos Liatsis, Mohammed Khalaf, Hissam Tawfik, Haya Al-Asker


    چکیده انگلیسی:

    Recurrent neural networks are dynamical systems that provide for memory capabilities to recall past behaviour, which is necessary in the prediction of time series. In this paper, a novel neural network architecture inspired by the immune algorithm is presented and used in the forecasting of naturally occurring signals, including weather big data signals. Big Data Analysis is a major research frontier, which attracts extensive attention from academia, industry and government, particularly in the context of handling issues related to complex dynamics due to changing weather conditions. Recently, extensive deployment of IoT, sensors, and ambient intelligence systems led to an exponential growth of data in the climate domain. In this study, we concentrate on the analysis of big weather data by using the Dynamic Self Organized Neural Network Inspired by the Immune Algorithm. The learning strategy of the network focuses on the local properties of the signal using a self-organised hidden layer inspired by the immune algorithm, while the recurrent links of the network aim at recalling previously observed signal patterns. The proposed network exhibits improved performance when compared to the feedforward multilayer neural network and state-of-the-art recurrent networks, e.g., the Elman and the Jordan networks. Three non-linear and non-stationary weather signals are used in our experiments. Firstly, the signals are transformed into stationary, followed by 5-steps ahead prediction. Improvements in the prediction results are observed with respect to the mean value of the error (RMS) and the signal to noise ratio (SNR), however to the expense of additional computational complexity, due to presence of recurrent links.
    Keywords: Recurrent Neural Networks ،Immune Systems Optimisation، Time Series Data analytics ، weather forecasting


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 38
    حجم فایل: 1768 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی