دانلود مقاله انگلیسی رایگان:پیش بینی نشانگرهای تراریخته یک نورون توسط خواص الکتروفیزیولوژیکی با استفاده از یادگیری ماشین - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Predicting transgenic markers of a neuron by electrophysiological properties using machine learning Predicting transgenic markers of a neuron by electrophysiological properties using machine learning
    Predicting transgenic markers of a neuron by electrophysiological properties using machine learning

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Predicting transgenic markers of a neuron by electrophysiological properties using machine learning


    ترجمه فارسی عنوان مقاله:

    پیش بینی نشانگرهای تراریخته یک نورون توسط خواص الکتروفیزیولوژیکی با استفاده از یادگیری ماشین


    منبع:

    Sciencedirect - Elsevier - Brain Research Bulletin, 150 (2019) 102-110: doi:10:1016/j:brainresbull:2019:05:012


    نویسنده:

    Incheol Seoa,1, Hyunsu Leeb,⁎


    چکیده انگلیسی:

    The task of classifying and identifying neurons, the essential components of the nervous system, has been undertaken in a variety of ways. The transcriptomic approach has become more accessible with the development of genetic engineering techniques. Considering the information processing function of the brain, however, it is necessary to consider the physiological characteristics of neurons. Recently, the Allen Institute for Brain Science has published the electrophysiological characteristics of neurons which were tagged with a transgenic reporter. We used these electrophysiological features to predict the transgenic markers of neurons. Using linear regression, random forest, and an artificial neural network, we assessed the performance of supervised machine learning models by comparing the prediction accuracy or the confusion matrix. As a result, in the binary classification problem of classifying excitatory and inhibitory neurons, the accuracy was 90% or more regardless of the model. The models showed better performance than merely distinguishing neurons by suprathreshold features such as the ratio of upstrokes and downstrokes of a single spike (ρ). However, when excitatory neurons were classified, the accuracy was 28˜47%, and the accuracy of classifying inhibitory neurons was 59˜73%. The present study was based on the results of electrophysiological experiments to determine whether transgenic markers of neurons could be predicted. Future research is needed to acquire electrophysiological data and transcriptomic data simultaneously on the single cell level to reveal the correlation between the gene expression and the physiological function of a neuron in building the neural network.
    Keywords: Neuron | Electrophysiology | Transgenic mice | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 1834 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی