دانلود مقاله انگلیسی رایگان:پیش بینی نوع های مولکولی سرطان پستان با استفاده از ویژگی های BI-RADS مبتنی بر رویکرد یادگیری ماشین جعبه سفید در یک تصویربرداری چند حالته - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Prediction of molecular subtypes of breast cancer using BI-RADS features based on a “white box” machine learning approach in a multi-modal imaging setting Prediction of molecular subtypes of breast cancer using BI-RADS features based on a “white box” machine learning approach in a multi-modal imaging setting
    Prediction of molecular subtypes of breast cancer using BI-RADS features based on a “white box” machine learning approach in a multi-modal imaging setting

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Prediction of molecular subtypes of breast cancer using BI-RADS features based on a “white box” machine learning approach in a multi-modal imaging setting


    ترجمه فارسی عنوان مقاله:

    پیش بینی نوع های مولکولی سرطان پستان با استفاده از ویژگی های BI-RADS مبتنی بر رویکرد یادگیری ماشین "جعبه سفید" در یک تصویربرداری چند حالته


    منبع:

    Sciencedirect - Elsevier - European Journal of Radiology, 114 (2019) 175-184: doi:10:1016/j:ejrad:2019:03:015


    نویسنده:

    Mingxiang Wua, Xiaoling Zhonga, Quanzhou Pengb, Mei Xua, Shelei Huanga, Jialin Yuana, Jie Maa,⁎, Tao Tanc,


    چکیده انگلیسی:

    Purpose: To develop and validate an interpretable and repeatable machine learning model approach to predict molecular subtypes of breast cancer from clinical metainformation together with mammography and MRI images. Methods: We retrospectively assessed 363 breast cancer cases (Luminal A 151, Luminal B 96, HER2 76, and BLBC 40). Eighty-two features defined in the BI-RADS lexicon were visually described. A decision tree model with the Chi-squared automatic interaction detector (CHAID) algorithm was applied for feature selection and classification. A 10-fold cross-validation was performed to investigate the performance (i.e., accuracy, positive predictive value, sensitivity, and F1-score) of the decision tree model. Results: Seven of the 82 variables were derived from the decision tree-based feature selection and used as features for the classification of molecular subtypes including mass margin calcification on mammography, mass margin types of kinetic curves in the delayed phase, mass internal enhancement characteristics, non-mass enhancement distribution on MRI, and breastfeeding history. The decision tree model accuracy was 74.1%. For each molecular subtype group, Luminal A achieved a sensitivity, positive predictive value, and F1-score of 79.47%, 75.47%, and 77.42%, respectively; Luminal B showed a sensitivity, positive predictive value, and F1- score of 64.58%, 55.86%, and 59.90%, respectively; HER2 had a sensitivity, positive predictive value, and F1- scores of 81.58%, 95.38%, and 87.94%, respectively; BLBC showed sensitivity, positive predictive value, and F1- scores of 62.50%, 89.29%, and 73.53%, respectively. Conclusions: We applied a complete “white box” machine learning method to predict the molecular subtype of breast cancer based on the BI-RADS feature description in a multi-modal setting. By combining BI-RADS features in both mammography and MRI, the prediction accuracy is boosted and robust. The proposed method can be easily applied widely regardless of variability of imaging vendors and settings because of the applicability and acceptance of the BI-RADS.
    Keywords: Breast cancer | Molecular subtype | MRI | Mammography | Decision tree | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 1141 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی