دانلود مقاله انگلیسی رایگان:استفاده از یادگیری ماشینی برای پیش بینی وقایع یک ساله قلبی و عروقی در بیماران دارای کاردیومیوپاتی اتساع شدید - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Using machine learning to predict one-year cardiovascular events in patients with severe dilated cardiomyopathy Using machine learning to predict one-year cardiovascular events in patients with severe dilated cardiomyopathy
    Using machine learning to predict one-year cardiovascular events in patients with severe dilated cardiomyopathy

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Using machine learning to predict one-year cardiovascular events in patients with severe dilated cardiomyopathy


    ترجمه فارسی عنوان مقاله:

    استفاده از یادگیری ماشینی برای پیش بینی وقایع یک ساله قلبی و عروقی در بیماران دارای کاردیومیوپاتی اتساع شدید


    منبع:

    Sciencedirect - Elsevier - European Journal of Radiology, 117 (2019) 178-183: doi:10:1016/j:ejrad:2019:06:004


    نویسنده:

    Rui Chena,b,1, Aijia Luc,1, Jingjing Wanga,b, Xiaohai Mac, Lei Zhaoc, Wanjia Wua, Zhicheng Dud, Hongwen Feie, Qiongwen Line, Zhuliang Yuf,⁎⁎, Hui Liua,b


    چکیده انگلیسی:

    Purpose: Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy and it is associated with poor outcomes. A poor prognosis of DCM patients with low ejection fraction has been noted in the short-term followup. Machine learning (ML) could aid clinicians in risk stratification and patient management after considering the correlation between numerous features and the outcomes. The present study aimed to predict the 1-year cardiovascular events in patients with severe DCM using ML, and aid clinicians in risk stratification and patient management. Materials and Methods: The dataset used to establish the ML model was obtained from 98 patients with severe DCM (LVEF < 35%) from two centres. Totally 32 features from clinical data were input to the ML algorithm, and the significant features highly relevant to the cardiovascular events were selected by Information gain (IG). A naive Bayes classifier was built, and its predictive performance was evaluated using the area under the curve (AUC) of the receiver operating characteristics by 10-fold cross-validation. Results: During the 1-year follow-up, a total of 22 patients met the criterion of the study end-point. The top features with IG > 0.01 were selected for ML model, including left atrial size (IG=0.240), QRS duration (IG=0.200), and systolic blood pressure (IG=0.151). ML performed well in predicting cardiovascular events in patients with severe DCM (AUC, 0.887 [95% confidence interval, 0.813–0.961]). Conclusions: ML effectively predicted risk in patients with severe DCM in 1-year follow-up, and this may direct risk stratification and patient management in the future.
    Keywords: Severe dilated cardiomyopathy | Prognostic value | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    حجم فایل: 1094 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی