دانلود مقاله انگلیسی رایگان:استراتژی رادیومیک مبتنی بر یادگیری ماشین برای پیش بینی تکثیر سلولی در سرطان ریه سلول غیر کوچک - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer
    Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer


    ترجمه فارسی عنوان مقاله:

    استراتژی رادیومیک مبتنی بر یادگیری ماشین برای پیش بینی تکثیر سلولی در سرطان ریه سلول غیر کوچک


    منبع:

    Sciencedirect - Elsevier - European Journal of Radiology, 118 (2019) 32-37: doi:10:1016/j:ejrad:2019:06:025


    نویسنده:

    Qianbiao Gua,b, Zhichao Fenga, Qi Lianga, Meijiao Lia, Jiao Denga, Mengtian Maa, Wei Wanga, Jianbin Liub, Peng Liub, Pengfei Ronga


    چکیده انگلیسی:

    Purpose: To explore the feasibility and performance of machine learning-based radiomics classifier to predict the cell proliferation(Ki-67)in non-small cell lung cancer (NSCLC). Methods: 245 histopathological confirmed NSCLC patients who underwent CT scans were retrospectively included. The Ki-67 proliferation index (Ki-67 PI) were measured within 2 weeks after CT scans. A lesion volume of interest (VOI) was manually delineated and radiomics features were extracted by MaZda software from CT images. A random forest feature selection algorithm (RFFS) was used to reduce features. Six kinds of machine learning methods were used to establish radiomics classifiers, subjective imaging feature classifiers and combined classifiers, respectively. The performance of these classifiers was evaluated by the receiver operating characteristic curve (ROC) and compared with Delong test. Results: 103 radiomics features were extracted and 20 optimal features were selected using RFFS. Among the radiomics classifiers established by six machine learning methods, random forest-based radiomics classifier achieved the best performance (AUC=0.776) in predicting the Ki-67 expression level with sensitivity and specificity of 0.726 and 0.661, which was better than that of subjective imaging classifiers (AUC=0.625, P < 0.05). However, the combined classifiers did not improve the predictive performance (AUC=0.780, P > 0.05), with sensitivity and specificity of 0.752 and 0.633. Conclusions: The machine learning-based CT radiomics classifier in NSCLC can facilitate the prediction of the expression level of Ki-67 and provide a novel non-invasive strategy for assessing the cell proliferation.
    Keywords: Non-small cell lung cancer (NSCLC) | Ki-67 | CT | Radiomics | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    حجم فایل: 681 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی