دانلود مقاله انگلیسی رایگان:Troodon: یک برنامه زمانبندی برنامه تعادل بار بر مبنای یادگیری ماشین برای سیستم CPU-GPU - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Troodon: A machine-learning based load-balancing application scheduler for CPU–GPU system Troodon: A machine-learning based load-balancing application scheduler for CPU–GPU system
    Troodon: A machine-learning based load-balancing application scheduler for CPU–GPU system

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Troodon: A machine-learning based load-balancing application scheduler for CPU–GPU system


    ترجمه فارسی عنوان مقاله:

    Troodon: یک برنامه زمانبندی برنامه تعادل بار بر مبنای یادگیری ماشین برای سیستم CPU-GPU


    منبع:

    Sciencedirect - Elsevier - Journal of Parallel and Distributed Computing, 132 (2019) 79-94: doi:10:1016/j:jpdc:2019:05:015


    نویسنده:

    Yasir Noman Khalid, Muhammad Aleem ∗, Usman Ahmed, Muhammad Arshad Islam, Muhammad Azhar Iqbal


    چکیده انگلیسی:

    Heterogeneous computing machines consisting of a CPU and one or more GPUs are increasingly being used today because of their higher performance-cost ratio and lower energy consumption. To program such heterogeneous systems, OpenCL has become an industry standard due to the portability across various computing architectures. To exploit the computing capabilities of heterogeneous systems, application developers are porting their cluster and Cloud applications using OpenCL. With the increasing number of such applications, the use of shared accelerating computing devices (such as CPUs and GPUs) should be managed using an efficient load-balancing scheduling heuristic capable of reducing execution time, increasing throughput with high device utilization. Mostly, the OpenCL applications are suited (execute faster) on a specific computing device (CPU or GPU) and with varying data-sizes the speedup obtained by an application on the suitable device varies too. Applications’ mapping to computing devices without considering device suitability and obtainable speedup on a suitable device leads to sub-optimal execution time, lower throughput and load imbalance. Therefore, an application scheduler should consider both the device-suitability and speedup variation for scheduling decisions leading to a reduction in execution time and an increase in throughput. In this paper, we present a novel load-balancing scheduling heuristic named as Troodon that considers machinelearning based device-suitability model that classify OpenCL applications into either CPU suitable or GPU suitable. Moreover, a speedup predictor that predicts the amount of speedup that jobs will obtain when executed on a suitable device is also part of the Troodon. Troodon incorporates the E-OSched scheduling mechanism to map jobs on CPU and GPUs in a load balanced way. This results in reduced applications execution time, increased system throughput, and improved device utilization. We evaluate the proposed scheduler using a large number of data-parallel applications and compared with several other state-of-the-art scheduling heuristics. The experimental evaluation has demonstrated that the proposed scheduler outperformed the existing heuristics and reduced the application execution time up to 38% with increased system throughput and device utilization.
    Keywords: Heterogeneous system | Scheduling | Device suitability | Load-balancing | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 2179 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی