دانلود مقاله انگلیسی رایگان:گروه های یادگیری ماشینی بیماران براساس احتمال بهبود عملکرد زودهنگام بر اساس سنسورهای پوشیدنی ابزار تست شده به موقع قبل و بعد از عمل - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Machine Learning Groups Patients by Early Functional Improvement Likelihood Based on Wearable Sensor Instrumented Preoperative Timed-Up-and-Go Tests Machine Learning Groups Patients by Early Functional Improvement Likelihood Based on Wearable Sensor Instrumented Preoperative Timed-Up-and-Go Tests
    Machine Learning Groups Patients by Early Functional Improvement Likelihood Based on Wearable Sensor Instrumented Preoperative Timed-Up-and-Go Tests

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Machine Learning Groups Patients by Early Functional Improvement Likelihood Based on Wearable Sensor Instrumented Preoperative Timed-Up-and-Go Tests


    ترجمه فارسی عنوان مقاله:

    گروه های یادگیری ماشینی بیماران براساس احتمال بهبود عملکرد زودهنگام بر اساس سنسورهای پوشیدنی ابزار تست شده به موقع قبل و بعد از عمل


    منبع:

    Sciencedirect - Elsevier - The Journal of Arthroplasty, 34 (2019) 2267-2271: doi:10:1016/j:arth:2019:05:061


    نویسنده:

    Riley A. Bloomfield, BESc a, b, *, Harley A. Williams, MSc b, c, Jordan S. Broberg, BMSc b, c, Brent A. Lanting, MD, MSc, FRCSC d, Kenneth A. McIsaac, PhD a, Matthew G. Teeter, PhD b,


    چکیده انگلیسی:

    Background: Wearable sensors permit efficient data collection and unobtrusive systems can be used for instrumenting knee patients for objective assessment. Machine learning can be leveraged to parse the abundant information these systems provide and segment patients into relevant groups without specifying group membership criteria. The objective of this study is to examine functional parameters influencing favorable recovery outcomes by separating patients into functional groups and tracking them through clinical follow-ups. Methods: Patients undergoing primary unilateral total knee arthroplasty (n ¼ 68) completed instrumented timed-up-and-go tests preoperatively and at their 2-, 6-, and 12-week follow-up appointments. A custom wearable system extracted 55 metrics for analysis and a K-means algorithm separated patients into functionally distinguished groups based on the derived features. These groups were analyzed to determine which metrics differentiated most and how each cluster improved during early recovery. Results: Patients separated into 2 clusters (n ¼ 46 and n ¼ 22) with significantly different test completion times (12.6 s vs 21.6 s, P < .001). Tracking the recovery of both groups to their 12-week follow-ups revealed 64% of one group improved their function while 63% of the other maintained preoperative function. The higher improvement group shortened their test times by 4.94 s, (P ¼ .005) showing faster recovery while the other group did not improve above a minimally important clinical difference (0.87 s, P ¼.07). Features with the largest effect size between groups were distinguished as important functional parameters. Conclusion: This work supports using wearable sensors to instrument functional tests during clinical visits and using machine learning to parse complex patterns to reveal clinically relevant parameters.
    Keywords: total knee arthroplasty | wearable sensors | machine learning | functional testing | early recovery


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 5
    حجم فایل: 391 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی