دانلود مقاله انگلیسی رایگان:پیش بینی خطر مبتنی بر لرزه نگاری از دست رفته گردش خون با استفاده از یادگیری ماشین - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Predicting seismic-based risk of lost circulation using machine learning Predicting seismic-based risk of lost circulation using machine learning
    Predicting seismic-based risk of lost circulation using machine learning

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Predicting seismic-based risk of lost circulation using machine learning


    ترجمه فارسی عنوان مقاله:

    پیش بینی خطر مبتنی بر لرزه نگاری از دست رفته گردش خون با استفاده از یادگیری ماشین


    منبع:

    Sciencedirect - Elsevier - Journal of Petroleum Science and Engineering, 176 (2019) 679-688: doi:10:1016/j:petrol:2019:01:089


    نویسنده:

    Zhi Genga,c,∗∗, Hanqing Wanga, Meng Fana, Yunhu Lua, Zhen Nied, Yunhong Dingd, Mian Chena,b,∗


    چکیده انگلیسی:

    Lost circulation during well drilling and completion wastes productive time, and even kills the well in severe cases. Timely identifying lost circulation events and taking countermeasures has been the focus of related study. However, a real prediction of lost circulation risk before drilling would be an active response to the challenge. In this paper, a technical solution is proposed to evaluate geological lost-circulation risk in the field using 3D seismic data attributes and machine learning technique. First, four seismic attributes (variance, attenuation, sweetness, RMS amplitude) that are the most correlated with lost circulation incidents are recommended. Then a prediction model is built by conducting supervised learning that involves a majority voting algorithm. The performance of the model is illustrated by six unseen drilled wells and shows the ability and potential to forecast lost circulation probability both along well trajectory and in the region far away from the drilled wells. The prediction resolution in the lateral and vertical direction is about 25m and 6m (2 ms), respectively, which are distinct advantages over the traditional description of geological structures using seismic data. It shows that the lost circulation risk can be hardly recognized by interpreting one specific seismic attribute, which is a common practice. Finally, the challenges in predicting lost circulation risk using seismic data are summarized. Overall, the study suggests that machine learning would be a practical solution to predict various construction risks that are related to seismic-based geological issues. Knowing in advance the risks, people could avoid or at least minimize the losses by optimizing well deployment in the field and taking preventive measures.
    Keywords: Machine learning | Lost circulation | Seismic attribute | Mud loss | Seismic interpretation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 10
    حجم فایل: 2901 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی