دانلود مقاله انگلیسی رایگان:اصول اولیه و یادگیری ماشین اندازه گیری جریان مجازی: مروری بر مقالات - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • First principles and machine learning Virtual Flow Metering: A literature review First principles and machine learning Virtual Flow Metering: A literature review
    First principles and machine learning Virtual Flow Metering: A literature review

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    First principles and machine learning Virtual Flow Metering: A literature review


    ترجمه فارسی عنوان مقاله:

    اصول اولیه و یادگیری ماشین اندازه گیری جریان مجازی: مروری بر مقالات


    منبع:

    Sciencedirect - Elsevier - Journal of Petroleum Science and Engineering, Journal Pre-proof, 106487: doi:10:1016/j:petrol:2019:106487


    نویسنده:

    Timur Bikmukhametov, Johannes Jäschke


    چکیده انگلیسی:

    Virtual Flow Metering (VFM) is an increasingly attractive method for estimation of multiphase flowrates in oil and gas production systems. Instead of using expensive hardware metering devices, numerical models are used to compute the flowrates by using readily available field measurements such as pressure and temperature. Currently, several VFM methods and software are developed which differ by their methodological nature and the industry use. In this paper, we review the state-of-the-art of VFM methods, the applied numerical models, field experience and current research activity. In addition, we identify gaps for future VFM research and development. The review shows that VFM is an active field of research, which has the potential to be used as a standalone metering solution or as a back-up for physical multiphase flow meters. However, to increase the value of VFM technology for oil and gas operators, future research should focus on developing auto-tuning and calibration methods which account for changes of fluid properties and operation conditions. In addition, the review shows that the potential of machine learning methods in VFM is not fully revealed, and future research should focus on developing robust methods which are able to quantify flow estimation uncertainties and incorporate first principle models that will result in more accurate and robust hybrid VFM systems. Finally, our review reveals that dynamic state estimation methods combined with first principles and machine learning models could further improve the VFM accuracy, especially under transient conditions, but implementation of these methods can be challenging, and further research is required to make them robust.
    Keywords: Virtual Flow Metering | Multiphase Flow Modeling and Estimation | Machine Learning | Oil and Gas Production Monitoring


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 37
    حجم فایل: 3850 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی