دانلود مقاله انگلیسی رایگان:مدلهای یادگیری ماشینی مبتنی بر کاهش ابعادی داده های پیرامونی اتوماتیک استاندارد برای تشخیص گلوکوم - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis
    Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis


    ترجمه فارسی عنوان مقاله:

    مدلهای یادگیری ماشینی مبتنی بر کاهش ابعادی داده های پیرامونی اتوماتیک استاندارد برای تشخیص گلوکوم


    منبع:

    Sciencedirect - Elsevier - Artificial Intelligence In Medicine, 94 (2019) 110-116: doi:10:1016/j:artmed:2019:02:006


    نویسنده:

    Su-Dong Leea, Ji-Hyung Leea, Young-Geun Choia, Hee-Cheon Youa, Ja-Heon Kangb, Chi-Hyuck Juna,⁎


    چکیده انگلیسی:

    Introduction: Visual field testing via standard automated perimetry (SAP) is a commonly used glaucoma diagnosis method. Applying machine learning techniques to the visual field test results, a valid clinical diagnosis of glaucoma solely based on the SAP data is provided. In order to reflect structural-functional patterns of glaucoma on the automated diagnostic models, we propose composite variables derived from anatomically grouped visual field clusters to improve the prediction performance. A set of machine learning-based diagnostic models are designed that implement different input data manipulation, dimensionality reduction, and classification methods. Methods: Visual field testing data of 375 healthy and 257 glaucomatous eyes were used to build the diagnostic models. Three kinds of composite variables derived from the Garway-Heath map and the glaucoma hemifield test (GHT) sector map were included in the input variables in addition to the 52 SAP visual filed locations. Dimensionality reduction was conducted to select important variables so as to alleviate high-dimensionality problems. To validate the proposed methods, we applied four classifiers—linear discriminant analysis, naïve Bayes classifier, support vector machines, and artificial neural networks—and four dimensionality reduction methods—Pearson correlation coefficient-based variable selection, Markov blanket variable selection, the minimum redundancy maximum relevance algorithm, and principal component analysis— and compared their classification performances. Results: For all tested combinations, the classification performance improved when the proposed composite variables and dimensionality reduction techniques were implemented. The combination of total deviation values, the GHT sector map, support vector machines, and Markov blanket variable selection obtains the best performance: an area under the receiver operating characteristic curve (AUC) of 0.912. Conclusion: A glaucoma diagnosis model giving an AUC of 0.912 was constructed by applying machine learning techniques to SAP data. The results show that dimensionality reduction not only reduces dimensions of the input space but also enhances the classification performance. The variable selection results show that the proposed composite variables from visual field clustering play a key role in the diagnosis model.
    Keywords: Glaucoma | Machine learning classifier | Dimensionality reduction | Visual field clustering


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 293 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی