دانلود مقاله انگلیسی رایگان:چارچوب تفسیر داده ها ادغام یادگیری ماشین و شناخت الگوی برای شناسایی آسیب خود محور داده با تغییرات انرژی برداشت شده - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Data interpretation framework integrating machine learning and pattern recognition for self-powered data-driven damage identification with harvested energy variations Data interpretation framework integrating machine learning and pattern recognition for self-powered data-driven damage identification with harvested energy variations
    Data interpretation framework integrating machine learning and pattern recognition for self-powered data-driven damage identification with harvested energy variations

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Data interpretation framework integrating machine learning and pattern recognition for self-powered data-driven damage identification with harvested energy variations


    ترجمه فارسی عنوان مقاله:

    چارچوب تفسیر داده ها ادغام یادگیری ماشین و شناخت الگوی برای شناسایی آسیب خود محور داده با تغییرات انرژی برداشت شده


    منبع:

    Sciencedirect - Elsevier - Engineering Applications of Artificial Intelligence, 86 (2019) 136-153: doi:10:1016/j:engappai:2019:08:004


    نویسنده:

    Hadi Salehi a, Subir Biswas b, Rigoberto Burgueño a,c,∗


    چکیده انگلیسی:

    Data mining methods have been widely used for structural health monitoring (SHM) and damage identification for analysis of continuous signals. Nonetheless, the applicability and effectiveness of these techniques cannot be guaranteed when dealing with discrete binary and incomplete/missing signals (i.e., not continuous in time). In this paper a novel data interpretation framework for SHM with noisy and incomplete signals, using a through-substrate self-powered sensing technology, is presented within the context of artificial intelligence (AI). AI methods, namely, machine learning and pattern recognition, were integrated within the data interpretation framework developed for use in a practical engineering problem: data-driven SHM of platelike structures. Finite element simulations on an aircraft stabilizer wing and experimental vibration tests on a dynamically loaded plate were conducted to validate the proposed framework. Machine learning algorithms, including support vector machine, k-nearest neighbor, and artificial neural networks, were integrated within the developed learning framework for performance assessment of the monitored structures. Different levels of harvested energy were considered to evaluate the robustness of the SHM system with respect to such variations. Results demonstrate that the SHM methodology employing the proposed machine learning-based data interpretation framework is efficient and robust for damage detection with incomplete and sparse/missing binary signals, overcoming the notable issue of energy availability for smart damage identification platforms being used in structural/infrastructure and aerospace health monitoring. The present study aims to advance data mining and interpretation techniques in the SHM domain, promoting the practical application of machine learning and pattern recognition with incomplete and missing/sparse signals in smart cities and smart infrastructure monitoring.
    Keywords: Structural health monitoring | Machine learning | Low-rank matrix completion | Pattern recognition | Self-powered sensors | Plate-like structures | Incomplete signals | Energy harvesting


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 18
    حجم فایل: 5310 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی