دانلود مقاله انگلیسی رایگان:ادغام الگوریتم های یادگیری ماشین بدون نظارت و نظارت برای ارزیابی ریسک اعتباری - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Integration of unsupervised and supervised machine learning algorithms for credit risk assessment Integration of unsupervised and supervised machine learning algorithms for credit risk assessment
    Integration of unsupervised and supervised machine learning algorithms for credit risk assessment

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Integration of unsupervised and supervised machine learning algorithms for credit risk assessment


    ترجمه فارسی عنوان مقاله:

    ادغام الگوریتم های یادگیری ماشین بدون نظارت و نظارت برای ارزیابی ریسک اعتباری


    منبع:

    Sciencedirect - Elsevier - Expert Systems With Applications, 128 (2019) 301-315: doi:10:1016/j:eswa:2019:02:033


    نویسنده:

    Wang Bao a , Ning Lianju a , ∗, Kong Yue b


    چکیده انگلیسی:

    For the sake of credit risk assessment, credit scoring has become a critical tool to discriminate “bad”applicants from “good”applicants for financial institutions. Accordingly, a wide range of supervised ma- chine learning algorithms have been successfully applied to credit scoring; however, integration of unsu- pervised learning with supervised learning in this field has drawn little consideration. In this work, we propose a combination strategy of integrating unsupervised learning with supervised learning for credit risk assessment. The difference between our work and other previous work on unsupervised integra- tion is that we apply unsupervised learning techniques at two different stages: the consensus stage and dataset clustering stage. Comparisons of model performance are performed based on three credit datasets in four groups: individual models, individual models + consensus model, clustering + individual models, clustering + individual models + consensus model. As a result, integration at either the consensus stage or dataset clustering stage is effective on improving the performance of credit scoring models. Moreover, the combination of the two stages achieves the best performance, thereby confirming the superiority of the proposed integration of unsupervised and supervised machine learning algorithms, which boost our confidence that this strategy can be extended to many other credit datasets from financial institutions.
    Keywords: Credit scoring | Ensemble model | Unsupervised machine learning | Supervised machine learning | Kohonen’s self-organizing maps (SOM)


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 15
    حجم فایل: 4202 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی