دانلود مقاله انگلیسی رایگان:یادگیری ماشین به طور دقیق نتایج کوتاه مدت را به دنبال کاهش باز و رفع داخلی شکستگی های مچ پا پیش بینی می کند - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures
    Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures


    ترجمه فارسی عنوان مقاله:

    یادگیری ماشین به طور دقیق نتایج کوتاه مدت را به دنبال کاهش باز و رفع داخلی شکستگی های مچ پا پیش بینی می کند


    منبع:

    Sciencedirect - Elsevier - The Journal of Foot and Ankle Surgery, 58 (2019) 410-416: doi:10:1053/j:jfas:2018:09:004


    نویسنده:

    Robert K. Merrill, MD1, Rocco M. Ferrandino, MD2, Ryan Hoffman, MD1, Gene W. Shaffer, MD3, Anthony Ndu, MD3


    چکیده انگلیسی:

    Ankle fractures are common orthopedic injuries with favorable outcomes when managed with open reduction and internal fixation (ORIF). Several patient-related risk factors may contribute to poor short-term outcomes, and machine learning may be a valuable tool for predicting outcomes. The objective of this study was to evaluate machine-learning algorithms for accurately predicting short-term outcomes after ORIF for ankle fractures. The Nationwide Inpatient Sample and Nationwide Readmissions Database were queried for adult patients ≥18 years old who underwent ORIF of an ankle fracture during 2013 or 2014. Morbidity and mortality, length of stay >3 days, and 30-day all-cause readmission were the outcomes of interest. Twomachine-learning models were created to identify patient and hospital characteristics associated with the 3 outcomes. The machine learning models were evaluated using confusion matrices and receiver operating characteristic area under the curve values. A total of 16,501 cases were drawn from the Nationwide Inpatient Sample and used to assessmorbidity and mortality and length of stay >3 days, and 33,504 cases were drawn from the Nationwide Readmissions Database to assess 30-day readmission. Older age, Medicaid, Medicare, deficiency anemia, congestive heart failure, chronic lung disease, diabetes, hypertension, and renal failure were the variables associated with a statistically significant increased risk of developing all 3 adverse events. Logistic regression and gradient boosting had similar area under the curve values for each outcome, but gradient boosting was more accurate and more specific for predicting each outcome. Our results suggest that several comorbidities may be associated with adverse short-term outcomes after ORIF of ankle fractures, and thatmachine learning can accurately predict these outcomes.
    Keywords: ankle fracture | ankle ORIF | gradient boosting | logistic regression | machine learning | readmissions


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 7
    حجم فایل: 693 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی