دانلود مقاله انگلیسی رایگان:شواهد در دنیای واقعی ، استنباط علت و یادگیری ماشین - 2019
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Real-World Evidence, Causal Inference, and Machine Learning Real-World Evidence, Causal Inference, and Machine Learning
    Real-World Evidence, Causal Inference, and Machine Learning

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Real-World Evidence, Causal Inference, and Machine Learning


    ترجمه فارسی عنوان مقاله:

    شواهد در دنیای واقعی ، استنباط علت و یادگیری ماشین


    منبع:

    Sciencedirect - Elsevier - Value in Health, 22 (2019) 587-592: doi:10:1016/j:jval:2019:03:001


    نویسنده:

    William H. Crown PhD


    چکیده انگلیسی:

    The current focus on real world evidence (RWE) is occurring at a time when at least two major trends are converging. First, is the progress made in observational research design and methods over the past decade. Second, the development of numerous large observational healthcare databases around the world is creating repositories of improved data assets to support observational research. Objective: This paper examines the implications of the improvements in observational methods and research design, as well as the growing availability of real world data for the quality of RWE. These developments have been very positive. On the other hand, unstructured data, such as medical notes, and the sparcity of data created by merging multiple data assets are not easily handled by traditional health services research statistical methods. In response, machine learning methods are gaining increased traction as potential tools for analyzing massive, complex datasets. Conclusions: Machine learning methods have traditionally been used for classification and prediction, rather than causal inference. The prediction capabilities of machine learning are valuable by themselves. However, using machine learning for causal inference is still evolving. Machine learning can be used for hypothesis generation, followed by the application of traditional causal methods. But relatively recent developments, such as targeted maximum likelihood methods, are directly integrating machine learning with causal inference.
    Keywords: big data | causal inference | econometrics | epidemiology | machine learning | real-world evidence | targeted maximum likelihood estimator


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    حجم فایل: 350 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی