دانلود مقاله انگلیسی رایگان:یادگیری ماشین با هدایت متالورژی فیزیکی و طراحی هوشمند مصنوعی از فولاد ضد زنگ قوی - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel
    Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel


    ترجمه فارسی عنوان مقاله:

    یادگیری ماشین با هدایت متالورژی فیزیکی و طراحی هوشمند مصنوعی از فولاد ضد زنگ قوی


    منبع:

    Sciencedirect - Elsevier - Acta Materialia, 179 (2019) 201-214: doi:10:1016/j:actamat:2019:08:033


    نویسنده:

    Chunguang Shen a, Chenchong Wang a, **, Xiaolu Wei a, Yong Li a, Sybrand van der Zwaag b, Wei Xu a


    چکیده انگلیسی:

    With the development of the materials genome philosophy and data mining methodologies, machine learning (ML) has been widely applied for discovering new materials in various systems including highend steels with improved performance. Although recently, some attempts have been made to incorporate physical features in the ML process, its effects have not been demonstrated and systematically analysed nor experimentally validated with prototype alloys. To address this issue, a physical metallurgy (PM) -guided ML model was developed, wherein intermediate parameters were generated based on original inputs and PM principles, e.g., equilibrium volume fraction (Vf) and driving force (Df) for precipitation, and these were added to the original dataset vectors as extra dimensions to participate in and guide the ML process. As a result, the ML process becomes more robust when dealing with small datasets by improving the data quality and enriching data information. Therefore, a new material design method is proposed combining PM-guided ML regression, ML classifier and a genetic algorithm (GA). The model was successfully applied to the design of advanced ultrahigh-strength stainless steels using only a small database extracted from the literature. The proposed prototype alloy with a leaner chemistry but better mechanical properties has been produced experimentally and an excellent agreement was obtained for the predicted optimal parameter settings and the final properties. In addition, the present work also clearly demonstrated that implementation of PM parameters can improve the design accuracy and efficiency by eliminating intermediate solutions not obeying PM principles in the ML process. Furthermore, various important factors influencing the generalizability of the ML model are discussed in detail.
    Keywords: Alloy design | Machine learning | Physical metallurgy | Small sample problem | Stainless steel


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 3393 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی