دانلود مقاله انگلیسی رایگان:شناسایی و تجزیه و تحلیل فنوتیپ های رفتاری در اختلال طیف اوتیسم از طریق یادگیری ماشین بدون نظارت - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning
    Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning


    ترجمه فارسی عنوان مقاله:

    شناسایی و تجزیه و تحلیل فنوتیپ های رفتاری در اختلال طیف اوتیسم از طریق یادگیری ماشین بدون نظارت


    منبع:

    Sciencedirect - Elsevier - International Journal of Medical Informatics, 129 (2019) 29-36: doi:10:1016/j:ijmedinf:2019:05:006


    نویسنده:

    Elizabeth Stevensa, Dennis R. Dixonb, Marlena N. Novackb, Doreen Granpeeshehb, Tristram Smithc, Erik Linsteada


    چکیده انگلیسی:

    Background and objective: Autism spectrum disorder (ASD) is a heterogeneous disorder. Research has explored potential ASD subgroups with preliminary evidence supporting the existence of behaviorally and genetically distinct subgroups; however, research has yet to leverage machine learning to identify phenotypes on a scale large enough to robustly examine treatment response across such subgroups. The purpose of the present study was to apply Gaussian Mixture Models and Hierarchical Clustering to identify behavioral phenotypes of ASD and examine treatment response across the learned phenotypes. Materials and methods: The present study included a sample of children with ASD (N = 2400), the largest of its kind to date. Unsupervised machine learning was applied to model ASD subgroups as well as their taxonomic relationships. Retrospective treatment data were available for a portion of the sample (n =1034). Treatment response was examined within each subgroup via regression. Results: The application of a Gaussian Mixture Model revealed 16 subgroups. Further examination of the subgroups through Hierarchical Agglomerative Clustering suggested 2 overlying behavioral phenotypes with unique deficit profiles each composed of subgroups that differed in severity of those deficits. Furthermore, differentiated response to treatment was found across subtypes, with a substantially higher amount of variance accounted for due to the homogenization effect of the clustering. Discussion: The high amount of variance explained by the regression models indicates that clustering provides a basis for homogenization, and thus an opportunity to tailor treatment based on cluster memberships. These findings have significant implications on prognosis and targeted treatment of ASD, and pave the way for personalized intervention based on unsupervised machine learning.
    Keywords: Machine learning | Autism spectrum disorder | Behavioral phenotypes | Cluster analysis | Treatment response


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 710 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی