دانلود مقاله انگلیسی رایگان:استخراج داده های خاص و اختصاصی بیمار با فناوری های یادگیری ماشین برای پیش بینی لغو جراحی کودکان - 2019
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی یادگیری ماشین رایگان
  • Mining patient-specific and contextual data with machine learning technologies to predict cancellation of children’s surgery Mining patient-specific and contextual data with machine learning technologies to predict cancellation of children’s surgery
    Mining patient-specific and contextual data with machine learning technologies to predict cancellation of children’s surgery

    سال انتشار:

    2019


    عنوان انگلیسی مقاله:

    Mining patient-specific and contextual data with machine learning technologies to predict cancellation of children’s surgery


    ترجمه فارسی عنوان مقاله:

    استخراج داده های خاص و اختصاصی بیمار با فناوری های یادگیری ماشین برای پیش بینی لغو جراحی کودکان


    منبع:

    Sciencedirect - Elsevier - International Journal of Medical Informatics, 129 (2019) 234-241: doi:10:1016/j:ijmedinf:2019:06:007


    نویسنده:

    Lei Liua,b, Yizhao Nia,b, Nanhua Zhangb,c, J. “Nick” Pratapb,d,⁎


    چکیده انگلیسی:

    Background: Last-minute surgery cancellation represents a major wastage of resources and can cause significant inconvenience to patients. Our objectives in this study were: 1) To develop predictive models of last-minute surgery cancellation, utilizing machine learning technologies, from patient-specific and contextual data from two distinct pediatric surgical sites of a single institution; and 2) to identify specific key predictors that impact children’s risk of day-of-surgery cancellation. Methods and findings: We extracted five-year datasets (2012–2017) from the Electronic Health Record at Cincinnati Children’s Hospital Medical Center. By leveraging patient-specific information and contextual data, machine learning classifiers were developed to predict all patient-related cancellations and the most frequent four cancellation causes individually (patient illness, “no show,” NPO violation and refusal to undergo surgery by either patient or family). Model performance was evaluated by the area under the receiver operating characteristic curve (AUC) using ten-fold cross-validation. The best performance for predicting all-cause surgery cancellation was generated by gradient-boosted logistic regression models, with AUC 0.781 (95% CI: [0.764,0.797]) and 0.740 (95% CI: [0.726,0.771]) for the two campuses. Of the four most frequent individual causes of cancellation, “no show” and NPO violation were predicted better than patient illness or patient/family refusal. Models showed good cross-campus generalizability (AUC: 0.725/0.735, when training on one site and testing on the other). To synthesize a human-oriented conceptualization of pediatric surgery cancellation, an iterative step-forward approach was applied to identify key predictors which may inform the design of future preventive interventions. Conclusions: Our study demonstrated the capacity of machine learning models for predicting pediatric patients at risk of last-minute surgery cancellation and providing useful insight into root causes of cancellation. The approach offers the promise of targeted interventions to significantly decrease both healthcare costs and also families’ negative experiences.
    Keywords: Pediatric surgery cancellation | Quality improvement | Predictive modeling | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 1743 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی